This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035286 #34 Jun 02 2025 16:49:53 %S A035286 0,0,32,156,456,1040,2040,3612,5936,9216,13680,19580,27192,36816, %T A035286 48776,63420,81120,102272,127296,156636,190760,230160,275352,326876, %U A035286 385296,451200,525200,607932,700056,802256,915240,1039740,1176512,1326336 %N A035286 Number of ways to place a non-attacking white and black king on n X n chessboard. %C A035286 A legal position is such that the kings are not on (horizontal, vertical or diagonal) neighboring squares. %C A035286 For n < 3 this is not possible, for n >= 3 a king on the corner, border or elsewhere on the board takes away 4, 6 resp. 9 allowed squares from the n X n board, which yields the formula. - _M. F. Hasler_, Nov 17 2021 %H A035286 Vincenzo Librandi, <a href="/A035286/b035286.txt">Table of n, a(n) for n = 1..1000</a> %H A035286 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A035286 a(n) = n^4 - 9 n^2 + 12 n - 4. %F A035286 G.f.: x^3*(8 - x - x^2)/(1 - x)^5. - _Colin Barker_, Jan 09 2013 %F A035286 a(n) = (n - 1) (n - 2) (n^2 + 3 n - 2). - _M. F. Hasler_, Nov 17 2021 %F A035286 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) - _Natalia L. Skirrow_, Oct 11 2022 %e A035286 There are 32 ways of putting 2 distinct kings on a 3 X 3 board so that neither can capture the other. %e A035286 From _M. F. Hasler_, Nov 17 2021: (Start) %e A035286 The first nonzero term occurs for n = 3 where we have the possibilities %e A035286 K x O x K x %e A035286 x x O and x x x and rotations of these by +-90 degrees and 180 degrees, %e A035286 O O O O O O %e A035286 where 'x' are forbidden squares, and 'O' are squares the opposite king can be placed on. This yields the a(3) = 4*(5 + 3) = 32 possibilities. (End) %t A035286 CoefficientList[Series[4 x^2 (x^2 + x - 8)/(x - 1)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 20 2013 *) %o A035286 (Magma) [n^4 - 9*n^2 + 12*n - 4: n in [1..40]]; // _Vincenzo Librandi_, Oct 20 2013 %o A035286 (PARI) apply( {A035286(n)=n^4-9*n^2+12*n-4}, [1..99]) \\ _M. F. Hasler_, Nov 17 2021 %K A035286 nonn,easy %O A035286 1,3 %A A035286 _Erich Friedman_