cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035294 Number of ways to partition 2n into distinct positive integers.

This page as a plain text file.
%I A035294 #64 Feb 16 2025 08:32:37
%S A035294 1,1,2,4,6,10,15,22,32,46,64,89,122,165,222,296,390,512,668,864,1113,
%T A035294 1426,1816,2304,2910,3658,4582,5718,7108,8808,10880,13394,16444,20132,
%U A035294 24576,29927,36352,44046,53250,64234,77312,92864,111322,133184,159046
%N A035294 Number of ways to partition 2n into distinct positive integers.
%C A035294 Also, number of partitions of 2n into odd numbers. - _Vladeta Jovovic_, Aug 17 2004
%C A035294 This sequence was originally defined as the expansion of sum ( q^n / product( 1-q^k, k=1..2*n), n=0..inf ). The present definition is due to _Reinhard Zumkeller_. Michael Somos points out that the equivalence of the two definitions follows from Andrews, page 19.
%C A035294 Also, number of partitions of 2n with max descent 1 and last part 1. - _Wouter Meeussen_, Mar 31 2013
%D A035294 G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.
%H A035294 Alois P. Heinz, <a href="/A035294/b035294.txt">Table of n, a(n) for n = 0..10000</a>
%H A035294 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A035294 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A035294 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A035294 a(n) = A000009(2*n). - _Michael Somos_, Mar 03 2003
%F A035294 Expansion of Sum_{n >= 0} q^n / Product_{k = 1..2*n} (1 - q^k).
%F A035294 a(n) = T(2*n, 0), T as defined in A026835.
%F A035294 G.f.: Product_{i >= 0} ((1 + x^(8*i + 1)) * (1 + x^(8*i + 2))^2 * (1 + x^(8*i + 3))^2 * (1 + x^(8*i + 4))^3 * (1 + x^(8*i + 5))^2 * (1 + x^(8*i + 6))^2 * (1 + x^(8*i + 7)) * (1 + x^(8*i + 8))^3). - _Vladeta Jovovic_, Oct 10 2004
%F A035294 G.f.: (Sum_{k>=0} x^A074378(k)) / (Product_{k>0} (1 - x^k)) = f( x^3, x^5) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - _Michael Somos_, Nov 01 2005
%F A035294 Euler transform of period 16 sequence [1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, ...]. - _Michael Somos_, Dec 17 2002
%F A035294 a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(11/4) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 06 2015
%F A035294 a(n) = A000041(n) + A282893(n). - _Michael Somos_, Feb 24 2017
%F A035294 Convolution with A000041 is A058696. - _Michael Somos_, Feb 24 2017
%F A035294 Convolution with A097451 is A262987. - _Michael Somos_, Feb 24 2017
%F A035294 G.f.: 1/(1 - x)*Sum_{n>=0} x^floor((3*n+1)/2)/Product_{k = 1..n} (1 - x^k). - _Peter Bala_, Feb 04 2021
%F A035294 G.f.: Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5))/(1 - q^n). - _Peter Bala_, Dec 30 2024
%e A035294 a(4)=6 [8=7+1=6+2=5+3=5+2+1=4+3+1=2*4].
%e A035294 G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 22*x^7 + 46*x^9 + ...
%e A035294 G.f. = q + q^49 + 2*q^97 + 4*q^145 + 6*q^193 + 10*q^241 + 15*q^289 + ...
%p A035294 b:= proc(n, i) option remember; `if`(n=0, 1,
%p A035294      `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
%p A035294     end:
%p A035294 a:= n-> b(2*n, 2*n-1):
%p A035294 seq(a(n), n=0..50);  # _Alois P. Heinz_, Feb 11 2015
%t A035294 Table[Count[IntegerPartitions[2 n], q_ /; Union[q] == Sort[q]], {n, 16}];
%t A035294 Table[Count[IntegerPartitions[2 n], q_ /; Count[q, _?EvenQ] == 0], {n, 16}];
%t A035294 Table[Count[IntegerPartitions[2 n], q_ /; Last[q] == 1 && Max[q - PadRight[Rest[q], Length[q]]] <= 1 ], {n, 16}];
%t A035294 (* _Wouter Meeussen_, Mar 31 2013 *)
%t A035294 a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] /QPochhammer[ x], {x, 0, 2 n}]; (* _Michael Somos_, May 06 2015 *)
%t A035294 a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8] / QPochhammer[ x], {x, 0, n}]; (* _Michael Somos_, May 06 2015 *)
%t A035294 nmax=60; CoefficientList[Series[Product[(1+x^(8*k+1)) * (1+x^(8*k+2))^2 * (1+x^(8*k+3))^2 * (1+x^(8*k+4))^3 * (1+x^(8*k+5))^2 * (1+x^(8*k+6))^2 * (1+x^(8*k+7)) * (1+x^(8*k+8))^3, {k,0,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 06 2015 *)
%t A035294 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2n, 2n-1]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Aug 30 2016, after _Alois P. Heinz_ *)
%o A035294 (PARI) {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};/* _Michael Somos_, Nov 01 2005 */
%o A035294 (Haskell)
%o A035294 import Data.MemoCombinators (memo2, integral)
%o A035294 a035294 n = a035294_list !! n
%o A035294 a035294_list = f 1 where
%o A035294    f x = (p' 1 (x - 1)) : f (x + 2)
%o A035294    p' = memo2 integral integral p
%o A035294    p _ 0 = 1
%o A035294    p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
%o A035294 -- _Reinhard Zumkeller_, Nov 27 2015
%Y A035294 Cf. A000009, A000041, A058686, A262987, A282893.
%Y A035294 Cf. A078408, A078406, A078407.
%Y A035294 Cf. A079122, A079126, A079124, A079125, A067953.
%Y A035294 Cf. A005408.
%K A035294 nonn,easy
%O A035294 0,3
%A A035294 _N. J. A. Sloane_, _Bill Gosper_