This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035296 #21 Jul 08 2025 21:31:58 %S A035296 1,1,2,4,7,12,18,28,41,60,85,119,164,225,304,408,542,716,938,1222, %T A035296 1582,2037,2609,3326,4220,5332,6708,8407,10497,13061,16197,20020, %U A035296 24671,30313,37141,45383,55311,67242,81552,98678,119135,143522,172545,207018,247899,296294,353492 %N A035296 Expansion of sum ( q^n / product( 1-q^k, k=1..4*n), n=0..inf ). %H A035296 Vaclav Kotesovec, <a href="/A035296/b035296.txt">Table of n, a(n) for n = 0..10000</a> %F A035296 a(n) ~ Gamma(1/4) * exp(Pi*sqrt(2*n/3)) / (2^(29/8) * 3^(1/8) * Pi^(3/4) * n^(5/8)). - _Vaclav Kotesovec_, Jun 17 2025 %t A035296 nmax = 50; CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j, 1, 4*k}], {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 16 2025 *) %t A035296 nmax = 50; p=1; s=1; Do[p=Expand[p*(1-x^(4*k))*(1-x^(4*k-1))*(1-x^(4*k-2))*(1-x^(4*k-3))];p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]];s+=x^k/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 16 2025 *) %Y A035296 Cf. A363067, A385068. %K A035296 nonn %O A035296 0,3 %A A035296 _N. J. A. Sloane_ %E A035296 More terms from _Vaclav Kotesovec_, Jun 16 2025