cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035298 Expansion of sum ( q^n / product( 1-q^k, k=1..6*n), n=0..inf ).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 19, 30, 44, 65, 93, 132, 183, 253, 343, 462, 616, 816, 1071, 1399, 1813, 2339, 2999, 3828, 4861, 6149, 7743, 9714, 12140, 15120, 18766, 23220, 28640, 35224, 43199, 52838, 64458, 78441, 95226, 115336, 139381, 168077, 202258, 242900, 291140, 348300, 415922
Offset: 0

Views

Author

Keywords

Comments

In general, for m>=1, if g.f. = Sum_{k>=0} x^k / Product_{j=1..m*k} (1 - x^j), then a(n) ~ Gamma(1/m) * exp(Pi*sqrt(2*n/3)) / (m * 2^((3*m + 1)/(2*m)) * 3^(1/(2*m)) * Pi^(1 - 1/m) * n^((m+1)/(2*m))). - Vaclav Kotesovec, Jun 17 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j, 1, 6*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 16 2025 *)
    nmax = 50; p=1; s=1; Do[p=Expand[p*(1-x^(6*k))*(1-x^(6*k-1))*(1-x^(6*k-2))*(1-x^(6*k-3))*(1-x^(6*k-4))*(1-x^(6*k-5))];p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]];s+=x^k/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2025 *)

Formula

a(n) ~ Gamma(1/6) * exp(Pi*sqrt(2*n/3)) / (2^(31/12) * 3^(13/12) * Pi^(5/6) * n^(7/12)). - Vaclav Kotesovec, Jun 17 2025

Extensions

More terms from Vaclav Kotesovec, Jun 16 2025