This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035306 #34 Jul 08 2025 21:32:33 %S A035306 1,1,2,1,3,1,2,2,5,1,2,1,3,1,7,1,2,3,3,2,2,1,5,1,11,1,2,2,3,1,13,1,2, %T A035306 1,7,1,3,1,5,1,2,4,17,1,2,1,3,2,19,1,2,2,5,1,3,1,7,1,2,1,11,1,23,1,2, %U A035306 3,3,1,5,2,2,1,13,1,3,3,2,2,7,1,29,1,2,1,3,1,5,1,31,1,2,5,3,1,11,1,2 %N A035306 List prime factors of each number in order (each prime factor is followed by its power). Start with 1 = {1,1}. %C A035306 This entry also serves to show how to factor numbers in various languages. %C A035306 Memo: in Maple, use ifactors, not ifactor! %C A035306 Length of n-th row = 2*A001221(n). - _Reinhard Zumkeller_, Jan 10 2013 %H A035306 Reinhard Zumkeller, <a href="/A035306/b035306.txt">Rows n = 1..1000 of triangle, flattened</a> %F A035306 For 1 <= k <= A001221(n): T(n,2*k-1) = A027748(n,k), T(n,2*k) = A124010(n,k). - _Reinhard Zumkeller_, Jan 10 2013 %e A035306 The table starts as follows: %e A035306 n | (p, valuation_p(n)) for primes p | n %e A035306 ----+--------------------------------------- %e A035306 1 | (1, 1), (row 1, by definition of this sequence) %e A035306 2 | (2, 1), (i.e.: 2 = 2^1) %e A035306 3 | (3, 1), %e A035306 4 | (2, 2), (i.e.: 4 = 2^2) %e A035306 5 | (5, 1), %e A035306 6 | (2, 1), (3, 1), (i.e.: 6 = 2^1 * 3^2) %e A035306 7 | (7, 1), %e A035306 8 | (2, 3), %e A035306 9 | (3, 2), %e A035306 10 | (2, 1), (5, 1), %e A035306 11 | (11, 1), %e A035306 12 | (2, 2), (3, 1), %e A035306 13 | (13, 1), %e A035306 14 | (2, 1), (7, 1), %e A035306 15 | (3, 1), (5, 1), %e A035306 16 | (2, 4), %e A035306 17 | (17, 1), %e A035306 18 | (2, 1), (3, 2), %e A035306 ... | ... %p A035306 ListTools[Flatten]([[[1, 1]], seq(op(2..-1, ifactors(n)), n=2..34)], 2); # _Peter Luschny_, Sep 02 2018 %t A035306 Flatten[ Array[ FactorInteger[ # ]&, 40 ] ] %o A035306 (Haskell) %o A035306 import Data.List (transpose) %o A035306 a035306 n k = a035306_row n !! (k-1) %o A035306 a035306_row 1 = [1,1] %o A035306 a035306_row n = concat $ transpose [a027748_row n, a124010_row n] %o A035306 a035306_tabf = map a035306_row [1..] %o A035306 -- _Reinhard Zumkeller_, Jan 10 2013 %o A035306 (Magma) [ Factorization(n) : n in [1..120]]; %o A035306 (PARI) upto(n) = {n = max(n, 1); my(res = List([1, 1])); for(i = 2, n, f = factor(i); for(j = 1, #f~, listput(res, f[j, 1]); listput(res, f[j, 2]))); res} \\ _David A. Corneth_, Sep 02 2018 %o A035306 (PARI) A035306_row(n)=if(n>1, concat(Col(factor(n))~), [1, 1]) \\ _M. F. Hasler_, Jun 04 2024 %o A035306 (Python) A035306_row = lambda n: [x for f in factorint(n).items() for x in f] %o A035306 from sympy import factorint # _M. F. Hasler_, Jun 06 2024 %Y A035306 Cf. A008474 (row sums, apart from initial row). %Y A035306 Cf. A001221, A001222, A027748, A124010. %K A035306 nonn,tabf %O A035306 1,3 %A A035306 _N. J. A. Sloane_