cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035306 List prime factors of each number in order (each prime factor is followed by its power). Start with 1 = {1,1}.

This page as a plain text file.
%I A035306 #34 Jul 08 2025 21:32:33
%S A035306 1,1,2,1,3,1,2,2,5,1,2,1,3,1,7,1,2,3,3,2,2,1,5,1,11,1,2,2,3,1,13,1,2,
%T A035306 1,7,1,3,1,5,1,2,4,17,1,2,1,3,2,19,1,2,2,5,1,3,1,7,1,2,1,11,1,23,1,2,
%U A035306 3,3,1,5,2,2,1,13,1,3,3,2,2,7,1,29,1,2,1,3,1,5,1,31,1,2,5,3,1,11,1,2
%N A035306 List prime factors of each number in order (each prime factor is followed by its power). Start with 1 = {1,1}.
%C A035306 This entry also serves to show how to factor numbers in various languages.
%C A035306 Memo: in Maple, use ifactors, not ifactor!
%C A035306 Length of n-th row = 2*A001221(n). - _Reinhard Zumkeller_, Jan 10 2013
%H A035306 Reinhard Zumkeller, <a href="/A035306/b035306.txt">Rows n = 1..1000 of triangle, flattened</a>
%F A035306 For 1 <= k <= A001221(n): T(n,2*k-1) = A027748(n,k), T(n,2*k) = A124010(n,k). - _Reinhard Zumkeller_, Jan 10 2013
%e A035306 The table starts as follows:
%e A035306    n  |  (p, valuation_p(n)) for primes p | n
%e A035306   ----+---------------------------------------
%e A035306    1  |  (1, 1),   (row 1, by definition of this sequence)
%e A035306    2  |  (2, 1),           (i.e.: 2 = 2^1)
%e A035306    3  |  (3, 1),
%e A035306    4  |  (2, 2),           (i.e.: 4 = 2^2)
%e A035306    5  |  (5, 1),
%e A035306    6  |  (2, 1), (3, 1),   (i.e.: 6 = 2^1 * 3^2)
%e A035306    7  |  (7, 1),
%e A035306    8  |  (2, 3),
%e A035306    9  |  (3, 2),
%e A035306    10 |  (2, 1), (5, 1),
%e A035306    11 |  (11, 1),
%e A035306    12 |  (2, 2), (3, 1),
%e A035306    13 |  (13, 1),
%e A035306    14 |  (2, 1), (7, 1),
%e A035306    15 |  (3, 1), (5, 1),
%e A035306    16 |  (2, 4),
%e A035306    17 |  (17, 1),
%e A035306    18 |  (2, 1), (3, 2),
%e A035306   ... | ...
%p A035306 ListTools[Flatten]([[[1, 1]], seq(op(2..-1, ifactors(n)), n=2..34)], 2); # _Peter Luschny_, Sep 02 2018
%t A035306 Flatten[ Array[ FactorInteger[ # ]&, 40 ] ]
%o A035306 (Haskell)
%o A035306 import Data.List (transpose)
%o A035306 a035306 n k = a035306_row n !! (k-1)
%o A035306 a035306_row 1 = [1,1]
%o A035306 a035306_row n = concat $ transpose [a027748_row n, a124010_row n]
%o A035306 a035306_tabf = map a035306_row [1..]
%o A035306 -- _Reinhard Zumkeller_, Jan 10 2013
%o A035306 (Magma) [ Factorization(n) : n in [1..120]];
%o A035306 (PARI) upto(n) = {n = max(n, 1); my(res = List([1, 1])); for(i = 2, n, f = factor(i); for(j = 1, #f~, listput(res, f[j, 1]); listput(res, f[j, 2]))); res} \\ _David A. Corneth_, Sep 02 2018
%o A035306 (PARI) A035306_row(n)=if(n>1, concat(Col(factor(n))~), [1, 1]) \\ _M. F. Hasler_, Jun 04 2024
%o A035306 (Python) A035306_row = lambda n: [x for f in factorint(n).items() for x in f]
%o A035306 from sympy import factorint # _M. F. Hasler_, Jun 06 2024
%Y A035306 Cf. A008474 (row sums, apart from initial row).
%Y A035306 Cf. A001221, A001222, A027748, A124010.
%K A035306 nonn,tabf
%O A035306 1,3
%A A035306 _N. J. A. Sloane_