This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035323 #26 Aug 18 2025 02:12:52 %S A035323 1,55,3850,298375,24466750,2079673750,181228712500,16084048234375, %T A035323 1447564341093750,131728355039531250,12095058053629687500, %U A035323 1118792869960746093750,104133797896346367187500,9743948231729552929687500,915931133782577975390625000,86441000750730796427490234375 %N A035323 Related to deca-factorial numbers A045757. %C A035323 Convolution of A035308(n-1) with A025755(n), n >= 1. %H A035323 Michael De Vlieger, <a href="/A035323/b035323.txt">Table of n, a(n) for n = 1..502</a> %H A035323 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seq., Vol. 3 (2000), Article 00.2.4. %H A035323 Elżbieta Liszewska and Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019. %H A035323 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>. %F A035323 a(n) = 10^(n-1)*A045757(n)/n!, where A045757(n) = (10*n-9)(!^10) = Product_{j=1..n} (10*j-9). %F A035323 G.f.: (-1+(1-100*x)^(-1/10))/10. %F A035323 D-finite with recurrence: n*a(n) + 10*(-10*n+9)*a(n-1) = 0. - _R. J. Mathar_, Jan 28 2020 %F A035323 a(n) ~ 10^(2*n-1) * n^(-9/10) / Gamma(1/10). - _Amiram Eldar_, Aug 18 2025 %t A035323 Rest@ CoefficientList[Series[(-1 + (1 - 100 x)^(-1/10))/10, {x, 0, 13}], x] (* _Michael De Vlieger_, Oct 13 2019 *) %Y A035323 Cf. A045757, A035308, A025755, A256191. %K A035323 easy,nonn %O A035323 1,2 %A A035323 _Wolfdieter Lang_