cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035342 The convolution matrix of the double factorial of odd numbers (A001147).

This page as a plain text file.
%I A035342 #138 Aug 22 2025 11:03:00
%S A035342 1,3,1,15,9,1,105,87,18,1,945,975,285,30,1,10395,12645,4680,705,45,1,
%T A035342 135135,187425,82845,15960,1470,63,1,2027025,3133935,1595790,370125,
%U A035342 43890,2730,84,1,34459425,58437855,33453945,8998290
%N A035342 The convolution matrix of the double factorial of odd numbers (A001147).
%C A035342 Previous name was: A triangle of numbers related to the triangle A035324; generalization of Stirling numbers of second kind A008277 and Lah numbers A008297.
%C A035342 If one replaces in the recurrence the '2' by '0', resp. '1', one obtains the Lah-number, resp. Stirling-number of 2nd kind, triangle A008297, resp. A008277.
%C A035342 The product of two lower triangular Jabotinsky matrices (see A039692 for the Knuth 1992 reference) is again such a Jabotinsky matrix: J(n,m) = Sum_{j=m..n} J1(n,j)*J2(j,m). The e.g.f.s of the first columns of these triangular matrices are composed in the reversed order: f(x)=f2(f1(x)). With f1(x)=-(log(1-2*x))/2 for J1(n,m)=|A039683(n,m)| and f2(x)=exp(x)-1 for J2(n,m)=A008277(n,m) one has therefore f2(f1(x))=1/sqrt(1-2*x) - 1 = f(x) for J(n,m)=a(n,m). This proves the matrix product given below. The m-th column of a Jabotinsky matrix J(n,m) has e.g.f. (f(x)^m)/m!, m>=1.
%C A035342 a(n,m) gives the number of forests with m rooted ordered trees with n non-root vertices labeled in an organic way. Organic labeling means that the vertex labels along the (unique) path from the root with label 0 to any leaf (non-root vertex of degree 1) is increasing. Proof: first for m=1 then for m>=2 using the recurrence relation for a(n,m) given below. - _Wolfdieter Lang_, Aug 07 2007
%C A035342 Also the Bell transform of A001147(n+1) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 19 2016
%H A035342 Reinhard Zumkeller, <a href="/A035342/b035342.txt">Rows n = 1..125 of triangle, flattened</a>
%H A035342 Peter Bala, <a href="/A035342/a035342_Bala.txt">Generalized Dobinski formulas</a>
%H A035342 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="https://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013-2014.
%H A035342 Pawel Blasiak, Karol A. Penson, and Allan I. Solomon, <a href="https://arxiv.org/abs/quant-ph/0212072">The Boson Normal Ordering Problem and Generalized Bell Numbers</a>, arXiv:quant-ph/0212072, 2002.
%H A035342 Pawel Blasiak, Karol A. Penson, and Allan I. Solomon, <a href="https://arxiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.
%H A035342 Richell O. Celeste, Roberto B. Corcino and Ken Joffaniel M. Gonzales. <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Celeste/celeste3.html"> Two Approaches to Normal Order Coefficients</a>. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
%H A035342 Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a>, 2015.
%H A035342 Tom Copeland, <a href="https://tcjpn.wordpress.com/2008/06/12/mathemagical-forests/">Addendum to Mathemagical Forests</a>, 2010.
%H A035342 Tom Copeland, <a href="https://tcjpn.wordpress.com/2008/06/12/mathemagical-forests/">Mathemagical Forests</a>, 2008.
%H A035342 Askar Dzhumadildaev and Damir Yeliussizov, <a href="http://arxiv.org/abs/1408.6764v1">Path decompositions of digraphs and their applications to Weyl algebra</a>, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
%H A035342 Askar Dzhumadil'daev and Damir Yeliussizov, <a href="https://doi.org/10.37236/5181">Walks, partitions, and normal ordering</a>, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
%H A035342 Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) #09.8.3.
%H A035342 Donald E. Knuth, <a href="https://arxiv.org/abs/math/9207221">Convolution polynomials</a>, arXiv:math/9207221 [math.CA], 1992; Mathematica J. 2.1 (1992), no. 4, 67-78.
%H A035342 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A035342 Wolfdieter Lang, <a href="/A035342/a035342.txt">First 10 rows</a>.
%H A035342 Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104v2 [math.CO], 2012.
%H A035342 Toufik Mansour, Matthias Schork and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Schork/schork2.html">The Generalized Stirling and Bell Numbers Revisited</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
%H A035342 Erich Neuwirth, <a href="https://doi.org/10.1016/S0012-365X(00)00373-3">Recursively defined combinatorial functions: Extending Galton's board</a>, Discrete Math. (2001) Vol. 239, 33-51.
%H A035342 Mathias Pétréolle and Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019.
%H A035342 Umesh Shankar, <a href="https://arxiv.org/abs/2508.12467">Log-concavity of rows of triangular arrays satisfying a certain super-recurrence</a>, arXiv:2508.12467 [math.CO], 2025. See p. 4.
%F A035342 a(n, m) = Sum_{j=m..n} |A039683(n, j)|*S2(j, m) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to _Wolfdieter Lang_ by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the comment on products of Jabotinsky matrices.
%F A035342 a(n, m) = n!*A035324(n, m)/(m!*2^(n-m)), n >= m >= 1; a(n+1, m)= (2*n+m)*a(n, m)+a(n, m-1); a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1.
%F A035342 E.g.f. of m-th column: ((x*c(x/2)/sqrt(1-2*x))^m)/m!, where c(x) = g.f. for Catalan numbers A000108.
%F A035342 From _Vladimir Kruchinin_, Mar 30 2011: (Start)
%F A035342 G.f. (1/sqrt(1-2*x) - 1)^k = Sum_{n>=k} (k!/n!)*a(n,k)*x^n.
%F A035342 a(n,k) = 2^(n+k) * n! / (4^n*n*k!) * Sum_{j=0..n-k} (j+k) * 2^(j) * binomial(j+k-1,k-1) * binomial(2*n-j-k-1,n-1). (End)
%F A035342 From _Peter Bala_, Nov 25 2011: (Start)
%F A035342 E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (3*t + t^2)*x^2/2! + (15*t + 9*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + 1/sqrt(1-2*x) satisfies the autonomous differential equation A'(x) = (1+A(x))^3.
%F A035342 The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-2*x)*dG/dx, from which follows the recurrence given above.
%F A035342 The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). (End)
%F A035342 The n-th row polynomial R(n,x) is given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k>=1} k*(k+2)*...*(k+2*n-2)*x^k/k!. - _Peter Bala_, Jun 22 2014
%F A035342 T(n,k) = 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*Gamma(2*n-k)/(Gamma(k)*Gamma(n-k+1)). - _Peter Luschny_, Mar 31 2015
%F A035342 T(n,k) = 2^n*Sum_{j=1..k} ((-1)^(k-j)*binomial(k, j)*Pochhammer(j/2, n)) / k!. - _Peter Luschny_, Mar 04 2024
%e A035342 Matrix begins:
%e A035342     1;
%e A035342     3,   1;
%e A035342    15,   9,   1;
%e A035342   105,  87,  18,   1;
%e A035342   945, 975, 285,  30,   1;
%e A035342   ...
%e A035342 Combinatoric meaning of a(3,2)=9: The nine increasing path sequences for the three rooted ordered trees with leaves labeled with 1,2,3 and the root labels 0 are: {(0,3),[(0,1),(0,2)]}; {(0,3),[(0,2),(0,1)]}; {(0,3),(0,1,2)}; {(0,1),[(0,3),(0,2)]}; [(0,1),[(0,2),(0,3)]]; [(0,2),[(0,1),(0,3)]]; {(0,2),[(0,3),(0,1)]}; {(0,1),(0,2,3)}; {(0,2),(0,1,3)}.
%p A035342 T := (n,k) -> 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*GAMMA(2*n-k)/
%p A035342 (GAMMA(k)*GAMMA(n-k+1)); for n from 1 to 9 do seq(simplify(T(n,k)),k=1..n) od; # _Peter Luschny_, Mar 31 2015
%p A035342 T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer(j/2, n), j = 1..k)/k!: for n from 1 to 6 do seq(T(n, k), k=1..n) od;  # _Peter Luschny_, Mar 04 2024
%t A035342 a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j + k - 1, k-1]*Binomial[2*n - j - k - 1, n-1], {j, 0, n-k}]; Flatten[Table[a[n,k], {n, 1, 9}, {k, 1, n}] ] [[1 ;; 40]] (* _Jean-François Alcover_, Jun 01 2011, after _Vladimir Kruchinin_ *)
%o A035342 (Maxima) a(n,k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1,k-1)*binomial(2*n-j-k-1,n-1),j,0,n-k); /* _Vladimir Kruchinin_, Mar 30 2011 */
%o A035342 (Haskell)
%o A035342 a035342 n k = a035342_tabl !! (n-1) !! (k-1)
%o A035342 a035342_row n = a035342_tabl !! (n-1)
%o A035342 a035342_tabl = map fst $ iterate (\(xs, i) -> (zipWith (+)
%o A035342    ([0] ++ xs) $ zipWith (*) [i..] (xs ++ [0]), i + 2)) ([1], 3)
%o A035342 -- _Reinhard Zumkeller_, Mar 12 2014
%o A035342 (Sage) # uses[bell_matrix from A264428]
%o A035342 # Adds a column 1,0,0,0, ... at the left side of the triangle.
%o A035342 print(bell_matrix(lambda n: A001147(n+1), 9)) # _Peter Luschny_, Jan 19 2016
%Y A035342 The column sequences are A001147, A035101, A035119, ...
%Y A035342 Row sums: A049118(n), n >= 1.
%Y A035342 Cf. A000108, A035324, A008277, A008297, A094638.
%K A035342 easy,nice,nonn,tabl,changed
%O A035342 1,2
%A A035342 _Wolfdieter Lang_
%E A035342 Simpler name from _Peter Luschny_, Mar 31 2015