This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035346 #54 Nov 09 2024 09:56:29 %S A035346 1,2,3,6,7,8,14,16,17,21,73,801,1971,3332,3469,3509,4318,7986,41292 %N A035346 Let F(n) = Q(n) - P(n) be the Fortunate numbers (A005235); sequence gives n such that F(n) = prime(n+1). %C A035346 Positive n such that A002110(n) + A000040(n+1) is prime. - _Robert Israel_, Dec 02 2015 %C A035346 Subsequence of A265109. - _Altug Alkan_, Dec 02 2015 %H A035346 Antonín Čejchan, Michal Křížek, and Lawrence Somer, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Krizek/krizek3.html">On Remarkable Properties of Primes Near Factorials and Primorials</a>, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4. %H A035346 S. W. Golomb, <a href="http://www.jstor.org/stable/2689634">The evidence for Fortune's conjecture</a>, Math. Mag. 54 (1981), 209-210. %e A035346 a(10) = 21 because A002110(21) + prime(22) = 40729680599249024150621323549 = 2*3*5*...*67*71*73 + 79 is prime. %p A035346 p:= 3: %p A035346 A[1]:= 1: %p A035346 count:= 1: %p A035346 Primorial:= 2: %p A035346 for n from 2 to 1000 do %p A035346 Primorial:= Primorial*p; %p A035346 p:= nextprime(p); %p A035346 if isprime(Primorial + p) then %p A035346 count:= count+1; %p A035346 A[count]:= n; %p A035346 fi %p A035346 od: %p A035346 seq(A[i],i=1..count); # _Robert Israel_, Dec 02 2015 %t A035346 Select[Range@ 801, PrimeQ[Product[Prime@ k, {k, #}] + Prime[# + 1]] &] (* _Michael De Vlieger_, Dec 02 2015 *) %o A035346 (PARI) lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s + prime(k+1)), print1(k, ", ")); ); } \\ _Altug Alkan_, Dec 02 2015 %Y A035346 Cf. A000040, A002110, A005235, A006862, A035345, A265109. %K A035346 nonn,more %O A035346 1,2 %A A035346 _N. J. A. Sloane_ %E A035346 a(10)-a(11) were found by _Labos Elemer_, May 02 2000 %E A035346 a(12) from _Ralf Stephan_, Oct 20 2002 %E A035346 Offset changed by _Altug Alkan_, Dec 02 2015 %E A035346 a(13) from _Michael De Vlieger_, Dec 02 2015 %E A035346 a(14)-a(18) from _Altug Alkan_, Dec 02 2015 %E A035346 a(19) from _Henri Lifchitz_, Nov 08 2024