cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035353 Number of asymmetric rooted polygonal cacti with bridges (mixed Husimi trees).

This page as a plain text file.
%I A035353 #15 Aug 30 2018 18:57:10
%S A035353 0,1,1,1,3,7,22,67,215,692,2283,7599,25631,87211,299386,1035059,
%T A035353 3602083,12606318,44344764,156698081,555989604,1980050697,7075365521,
%U A035353 25360341963,91155701023,328500571740,1186656421109,4296084607302
%N A035353 Number of asymmetric rooted polygonal cacti with bridges (mixed Husimi trees).
%H A035353 Andrew Howroyd, <a href="/A035353/b035353.txt">Table of n, a(n) for n = 0..200</a>
%H A035353 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>
%H A035353 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A035353 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>
%H A035353 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H A035353 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A035353 Shifts left under transform T where Ta = WEIGH(BHK(a)).
%o A035353 (PARI)
%o A035353 BHK(p)={p + (1/(1-p) - (1+p)/subst(1-p, x, x^2))/2}
%o A035353 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
%o A035353 seq(n)={my(v=[0]); for(n=1, n, v=concat([0,1], WeighT(Vec(BHK(Ser(v)))))); v} \\ _Andrew Howroyd_, Aug 30 2018
%Y A035353 Cf. A000083, A000237, A000314, A035082, A035349-A035357.
%K A035353 nonn,eigen
%O A035353 0,5
%A A035353 _Christian G. Bower_, Nov 15 1998