cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035359 Number of partitions-into-distinct-parts of n (A000009) is a prime.

This page as a plain text file.
%I A035359 #43 Feb 16 2025 08:32:37
%S A035359 3,4,5,7,22,70,100,495,1247,2072,320397,3335367,16168775,37472505,
%T A035359 52940251,78840125,81191852
%N A035359 Number of partitions-into-distinct-parts of n (A000009) is a prime.
%C A035359 No other terms below 10^8. - _Max Alekseyev_, Jul 10 2015
%H A035359 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>
%H A035359 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionQ.html">Partition Function Q</a>
%H A035359 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionQCongruences.html">Partition Function Q-Congruences</a>
%e A035359 From _Gus Wiseman_, Jan 13 2020: (Start)
%e A035359 Strict partitions of a(1) = 3 through a(4) = 7:
%e A035359   (3)    (4)    (5)    (7)
%e A035359   (2,1)  (3,1)  (3,2)  (4,3)
%e A035359                 (4,1)  (5,2)
%e A035359                        (6,1)
%e A035359                        (4,2,1)
%e A035359 (End)
%t A035359 n = 1; A035359 = {}; While[n < 10^7, n++; If[ PrimeQ[ PartitionsQ[n]], Print[n]; AppendTo[A035359, n]]]; A035359 (* _Jean-François Alcover_, Oct 12 2011 *)
%Y A035359 The non-strict version is A046063.
%Y A035359 The version for powers of 2 instead of primes is A331022.
%Y A035359 The version for factorizations instead of strict partitions is A330991.
%Y A035359 The version for strict factorizations instead of strict partitions is A331201.
%Y A035359 Cf. A000009, A051005, A056848, A265835.
%K A035359 nonn,nice,hard,more
%O A035359 1,1
%A A035359 _Olivier Gérard_
%E A035359 More terms from _Eric W. Weisstein_
%E A035359 a(12) from _Max Alekseyev_, Jul 04 2009
%E A035359 a(13)-a(14) from _Giovanni Resta_, Jun 05 2015, Jun 11 2015
%E A035359 a(15)-a(17) from _Max Alekseyev_, Jul 10 2015