This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035359 #43 Feb 16 2025 08:32:37 %S A035359 3,4,5,7,22,70,100,495,1247,2072,320397,3335367,16168775,37472505, %T A035359 52940251,78840125,81191852 %N A035359 Number of partitions-into-distinct-parts of n (A000009) is a prime. %C A035359 No other terms below 10^8. - _Max Alekseyev_, Jul 10 2015 %H A035359 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a> %H A035359 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionQ.html">Partition Function Q</a> %H A035359 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionQCongruences.html">Partition Function Q-Congruences</a> %e A035359 From _Gus Wiseman_, Jan 13 2020: (Start) %e A035359 Strict partitions of a(1) = 3 through a(4) = 7: %e A035359 (3) (4) (5) (7) %e A035359 (2,1) (3,1) (3,2) (4,3) %e A035359 (4,1) (5,2) %e A035359 (6,1) %e A035359 (4,2,1) %e A035359 (End) %t A035359 n = 1; A035359 = {}; While[n < 10^7, n++; If[ PrimeQ[ PartitionsQ[n]], Print[n]; AppendTo[A035359, n]]]; A035359 (* _Jean-François Alcover_, Oct 12 2011 *) %Y A035359 The non-strict version is A046063. %Y A035359 The version for powers of 2 instead of primes is A331022. %Y A035359 The version for factorizations instead of strict partitions is A330991. %Y A035359 The version for strict factorizations instead of strict partitions is A331201. %Y A035359 Cf. A000009, A051005, A056848, A265835. %K A035359 nonn,nice,hard,more %O A035359 1,1 %A A035359 _Olivier Gérard_ %E A035359 More terms from _Eric W. Weisstein_ %E A035359 a(12) from _Max Alekseyev_, Jul 04 2009 %E A035359 a(13)-a(14) from _Giovanni Resta_, Jun 05 2015, Jun 11 2015 %E A035359 a(15)-a(17) from _Max Alekseyev_, Jul 10 2015