cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035377 Number of partitions of n into parts 6k or 6k+3.

This page as a plain text file.
%I A035377 #19 Jan 24 2025 12:17:07
%S A035377 1,0,0,1,0,0,2,0,0,3,0,0,5,0,0,7,0,0,11,0,0,15,0,0,22,0,0,30,0,0,42,0,
%T A035377 0,56,0,0,77,0,0,101,0,0,135,0,0,176,0,0,231,0,0,297,0,0,385,0,0,490,
%U A035377 0,0,627,0,0,792,0,0,1002,0,0,1255,0,0,1575,0,0,1958,0,0,2436,0,0,3010
%N A035377 Number of partitions of n into parts 6k or 6k+3.
%C A035377 Euler transform of period 3 sequence [ 0, 0, 1, ...]. - _Kevin T. Acres_, Apr 28 2018
%F A035377 a(3*n) = A000041(n). a(3*n + 1) = a(3*n + 2) = 0. - _Michael Somos_, Jun 02 2012
%p A035377 a:= n-> `if`(irem(n, 3)=0, combinat[numbpart](n/3), 0):
%p A035377 seq(a(n), n=0..84);  # _Alois P. Heinz_, Jun 22 2021
%t A035377 a[n_] := If[Mod[n, 3] == 0, PartitionsP[n/3], 0];
%t A035377 Table[a[n], {n, 0, 84}] (* _Jean-François Alcover_, Jan 24 2025, after _Alois P. Heinz_ *)
%Y A035377 Cf. A000041.
%K A035377 nonn
%O A035377 0,7
%A A035377 _Olivier Gérard_