cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035378 Coefficients in expansion of Sum_{k>=0} Product_{j=1..k} (1-x^j) about x = -1.

This page as a plain text file.
%I A035378 #23 Jun 23 2023 15:55:59
%S A035378 3,11,72,635,7085,95911,1528541,28044762,582314535,13500314080,
%T A035378 345696545788,9690223054222,295132850278639,9705001713289680,
%U A035378 342693270841135600,12932930349605422101,519485442041267214922
%N A035378 Coefficients in expansion of Sum_{k>=0} Product_{j=1..k} (1-x^j) about x = -1.
%H A035378 Vaclav Kotesovec, <a href="/A035378/b035378.txt">Table of n, a(n) for n = 0..250</a>
%H A035378 Hsien-Kuei Hwang, and Emma Yu Jin, <a href="https://arxiv.org/abs/1911.06690">Asymptotics and statistics on Fishburn matrices and their generalizations</a>, arXiv:1911.06690 [math.CO], p. 35, 2019.
%F A035378 a(n) ~ sqrt(12) * exp(Pi^2/48) * 24^(n+1) * n^(n+1) / (exp(n) * Pi^(2*n+2)). - _Vaclav Kotesovec_, May 04 2014
%F A035378 Conjectures: a(5*n+3) == 0 (mod 5), a(5*n+4) == 0 (mod 5) and a(5*n+2) - 2*a(5*n+1) == (0 mod 5) (all checked up to n = 49). - _Peter Bala_, Jun 19 2023
%o A035378 (PARI) a(n)=polcoeff(sum(i=0,2*n+1,prod(j=1,i,1-(x-1)^j,1+x*O(x^n))),n)
%Y A035378 Cf. A022493.
%K A035378 nonn
%O A035378 0,1
%A A035378 _Bill Gosper_, Aug 19 2001
%E A035378 More terms from _Vladeta Jovovic_, Aug 20 2001