A035399 Limit of the position of the n-th partition without repetition in the list of all integer partitions sorted in reverse lexicographic order.
1, 2, 3, 5, 6, 8, 9, 13, 14, 15, 20, 21, 22, 25, 31, 32, 33, 35, 36, 46, 47, 48, 50, 51, 54, 68, 69, 70, 72, 73, 75, 76, 81, 98, 99, 100, 102, 103, 105, 106, 111, 112, 120, 140, 141, 142, 144, 145, 147, 148, 152, 153, 154, 160, 163, 196, 197, 198, 200, 201, 203
Offset: 1
Keywords
Examples
For i=5, the partitions of i are 5, 41, 32, 311, 221, 2111, 11111. The partitions without repetition are at position 1,2 and 3, corresponding to the first three terms of the sequence. For i=10, the partitions of i begin 10, 91, 82, 811, 73, 721, 7111, 64, 631, 622, ... The partitions without repetition are at position 1,2,3,5,6,8,9, ...
Links
- Wouter Meeussen, Table of n, a(n) for n = 1..207
Programs
-
Mathematica
it=Table[Flatten[Position[IntegerPartitions[n],q_List/; Sort[q]==Union[q] ,1]],{n,36,36+2,2}]; {{diffat}}=Position[Take[Last[it],Length[First[it] ] ] - First[it] , a_ /;(a!=0),1,1]; Take[First[it],diffat -1 ]
Extensions
Example and explanations from Olivier Gérard, Feb 13 2011