cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035435 Number of partitions of n into parts 7k+3 or 7k+4.

This page as a plain text file.
%I A035435 #15 Jan 24 2017 16:25:19
%S A035435 1,0,0,1,1,0,1,1,1,1,2,2,2,2,3,3,3,4,5,4,6,7,7,7,10,10,10,12,15,14,16,
%T A035435 19,21,21,25,28,30,31,37,40,42,46,54,55,60,68,74,76,87,95,101,108,122,
%U A035435 130,139,151,168,176,190,209,227,237,261,284,302,321,355,378,402,434
%N A035435 Number of partitions of n into parts 7k+3 or 7k+4.
%C A035435 Convolution of A109706 and A109705. - _Vaclav Kotesovec_, Jan 21 2017
%H A035435 Vaclav Kotesovec, <a href="/A035435/b035435.txt">Table of n, a(n) for n = 0..10000</a>
%F A035435 a(n) ~ exp(2*Pi*sqrt(n/21)) / (4 * 21^(1/4) * cos(Pi/14) * n^(3/4)) * (1 + (23*Pi/(84*sqrt(21)) - 3*sqrt(21)/(16*Pi)) / sqrt(n)). - _Vaclav Kotesovec_, Aug 26 2015, extended Jan 24 2017
%t A035435 nmax = 100; CoefficientList[Series[Product[1/((1 - x^(7k+3))*(1 - x^(7k+4))), {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 26 2015 *)
%K A035435 nonn
%O A035435 0,11
%A A035435 _Olivier Gérard_
%E A035435 Prepended a(0)=1 from _Vaclav Kotesovec_, Jan 23 2017