cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035445 Number of partitions of n into parts 8k or 8k+5.

This page as a plain text file.
%I A035445 #13 Aug 03 2020 14:45:28
%S A035445 0,0,0,0,1,0,0,1,0,1,0,0,2,0,1,2,0,2,0,1,4,0,2,3,1,5,0,2,7,1,5,5,2,9,
%T A035445 1,5,12,2,10,8,5,17,2,10,20,5,19,13,10,29,5,20,32,10,34,20,20,49,10,
%U A035445 36,50,20,59,32,37,78,20,64,77,37,97,50,66,124,37,107,117,67,157,79
%N A035445 Number of partitions of n into parts 8k or 8k+5.
%H A035445 Robert Price, <a href="/A035445/b035445.txt">Table of n, a(n) for n = 1..1000</a>
%F A035445 a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(5/8) / (2^(29/16) * 3^(9/16) * Pi^(3/8) * n^(17/16)). - _Vaclav Kotesovec_, Aug 26 2015
%t A035445 nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+8))*(1 - x^(8k+5))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 26 2015 *)
%t A035445 nmax = 50; kmax = nmax/8;
%t A035445 s = Flatten[{Range[0, kmax]*8}~Join~{Range[0, kmax]*8 + 5}];
%t A035445 Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* _Robert Price_, Aug 03 2020 *)
%Y A035445 Cf. A035676.
%K A035445 nonn
%O A035445 1,13
%A A035445 _Olivier Gérard_