This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035447 #13 Aug 03 2020 18:08:38 %S A035447 0,0,0,0,0,0,1,1,0,0,0,0,0,1,2,2,0,0,0,0,1,2,4,3,0,0,0,1,2,5,7,5,0,0, %T A035447 1,2,5,9,12,7,0,1,2,5,10,17,19,11,1,2,5,10,19,28,30,16,2,5,10,20,33, %U A035447 47,46,24,5,10,20,35,57,74,69,35,10,20,36,62,93,116,102,52,20,36,64 %N A035447 Number of partitions of n into parts 8k or 8k+7. %H A035447 Robert Price, <a href="/A035447/b035447.txt">Table of n, a(n) for n = 1..1000</a> %F A035447 a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(7/8) / (2^(23/16) * 3^(11/16) * Pi^(1/8) * n^(19/16)). - _Vaclav Kotesovec_, Aug 26 2015 %t A035447 nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+8))*(1 - x^(8k+7))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 26 2015 *) %t A035447 nmax = 50; kmax = nmax/8; %t A035447 s = Flatten[{Range[0, kmax]*8}~Join~{Range[0, kmax]*8 + 7}]; %t A035447 Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* _Robert Price_, Aug 03 2020 *) %Y A035447 Cf. A035679. %K A035447 nonn %O A035447 1,15 %A A035447 _Olivier Gérard_