cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035456 Number of partitions of n into parts 8k+2 or 8k+5.

This page as a plain text file.
%I A035456 #13 Aug 04 2020 05:03:48
%S A035456 0,1,0,1,1,1,1,1,1,3,1,3,2,3,4,3,4,5,4,8,5,8,8,8,11,11,11,15,12,19,17,
%T A035456 19,22,22,26,30,27,36,34,41,44,45,51,56,57,69,66,77,82,87,97,104,107,
%U A035456 125,124,143,149,158,175,186,196,221,221,252,263,280,307,321,344,379
%N A035456 Number of partitions of n into parts 8k+2 or 8k+5.
%H A035456 Robert Price, <a href="/A035456/b035456.txt">Table of n, a(n) for n = 1..1000</a>
%F A035456 a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(5/8) * Gamma(1/4) / (4 * 2^(15/16) * 3^(3/16) * Pi^(9/8) * n^(11/16)). - _Vaclav Kotesovec_, Aug 26 2015
%t A035456 nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+2))*(1 - x^(8k+5))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 26 2015 *)
%t A035456 nmax = 60; kmax = nmax/8;
%t A035456 s = Flatten[{Range[0, kmax]*8 + 2}~Join~{Range[0, kmax]*8 + 5}];
%t A035456 Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* _Robert Price_, Aug 03 2020 *)
%Y A035456 Cf. A035687.
%K A035456 nonn
%O A035456 1,10
%A A035456 _Olivier Gérard_