This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035459 #13 Aug 04 2020 19:32:41 %S A035459 0,0,1,1,0,1,1,1,1,1,2,3,1,2,4,3,2,4,5,5,4,6,8,8,6,9,12,11,9,14,17,15, %T A035459 15,20,23,23,21,28,34,31,30,41,45,43,44,55,62,60,60,76,84,80,83,103, %U A035459 112,108,114,138,148,146,153,182,197,192,203,243,256,252,272,315,333 %N A035459 Number of partitions of n into parts 8k+3 or 8k+4. %H A035459 Robert Price, <a href="/A035459/b035459.txt">Table of n, a(n) for n = 1..1000</a> %F A035459 a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(3/8) / (4 * 2^(15/16) * 3^(3/16) * Pi^(5/8) * n^(11/16)). - _Vaclav Kotesovec_, Aug 26 2015 %t A035459 nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+3))*(1 - x^(8k+4))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 26 2015 *) %t A035459 nmax = 60; kmax = nmax/8; %t A035459 s = Flatten[{Range[0, kmax]*8 + 3}~Join~{Range[0, kmax]*8 + 4}]; %t A035459 Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* _Robert Price_, Aug 04 2020 *) %Y A035459 Cf. A035690. %K A035459 nonn %O A035459 1,11 %A A035459 _Olivier Gérard_