This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035463 #13 Aug 04 2020 13:38:57 %S A035463 0,0,0,1,1,0,0,1,1,1,0,2,2,1,1,2,3,2,1,4,4,3,2,5,7,5,3,7,9,8,5,9,13, %T A035463 11,8,13,17,16,12,18,24,22,17,24,32,31,24,32,43,42,34,43,56,57,47,57, %U A035463 74,75,64,76,96,100,86,99,126,130,115,129,161,171,151,168,207,219,200 %N A035463 Number of partitions of n into parts 8k+4 or 8k+5. %H A035463 Robert Price, <a href="/A035463/b035463.txt">Table of n, a(n) for n = 1..1000</a> %F A035463 a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(5/8) / (4 * 2^(9/16) * 3^(5/16) * Pi^(3/8) * n^(13/16)). - _Vaclav Kotesovec_, Aug 27 2015 %t A035463 nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+4))*(1 - x^(8k+5))), {k, 0, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Aug 27 2015 *) %t A035463 nmax = 60; kmax = nmax/8; %t A035463 s = Flatten[{Range[0, kmax]*8 + 4}~Join~{Range[0, kmax]*8 + 5}]; %t A035463 Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* _Robert Price_, Aug 04 2020 *) %Y A035463 Cf. A035694. %K A035463 nonn %O A035463 1,12 %A A035463 _Olivier Gérard_