cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035469 Triangle read by rows, the Bell transform of the triple factorial numbers A007559(n+1) without column 0.

This page as a plain text file.
%I A035469 #99 Jul 31 2025 07:34:37
%S A035469 1,4,1,28,12,1,280,160,24,1,3640,2520,520,40,1,58240,46480,11880,1280,
%T A035469 60,1,1106560,987840,295960,40040,2660,84,1,24344320,23826880,8090880,
%U A035469 1296960,109200,4928,112,1,608608000,643843200
%N A035469 Triangle read by rows, the Bell transform of the triple factorial numbers A007559(n+1) without column 0.
%C A035469 Previous name was: Triangle of numbers related to triangle A035529; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297 and A035342.
%C A035469 a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quartic (4-ary) trees. Proof based on the a(n,m) recurrence. See a D. Callan comment on the m=1 case A007559. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - _Wolfdieter Lang_, Sep 14 2007
%C A035469 For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 19 2016
%D A035469 F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
%H A035469 Peter Bala, <a href="/A035342/a035342_Bala.txt">Generalized Dobinski formulas</a>
%H A035469 P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.
%H A035469 Richell O. Celeste, Roberto B. Corcino and Ken Joffaniel M. Gonzales. <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Celeste/celeste3.html">Two Approaches to Normal Order Coefficients</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
%H A035469 Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a>
%H A035469 Tom Copeland, <a href="http://tcjpn.wordpress.com/">Mathemagical Forests</a>
%H A035469 Tom Copeland, <a href="http://tcjpn.wordpress.com/">Addendum to Mathemagical Forests</a>
%H A035469 Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3.
%H A035469 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A035469 Wolfdieter Lang, <a href="/A035469/a035469.txt">First 10 rows</a>.
%H A035469 Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
%H A035469 E. Neuwirth, <a href="http://homepage.univie.ac.at/erich.neuwirth/papers/TechRep99-05.pdf">Recursively defined combinatorial functions: Extending Galton's board</a>, Discrete Math. 239 (2001) 33-51.
%H A035469 Mathias Pétréolle and Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019.
%F A035469 a(n, m) = Sum_{j=m..n} |A051141(n, j)|*S2(j, m) (matrix product), with S2(j, m):=A008277(j, m) (Stirling2 triangle). Priv. comm. to _Wolfdieter Lang_ by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
%F A035469 a(n, m) = n!*A035529(n, m)/(m!*3^(n-m)); a(n+1, m) = (3*n+m)*a(n, m) + a(n, m-1), n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0, a(1, 1)=1;
%F A035469 E.g.f. of m-th column: ((-1+(1-3*x)^(-1/3))^m)/m!.
%F A035469 From _Peter Bala_, Nov 25 2011: (Start)
%F A035469 E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (4*t+t^2)*x^2/2! + (28*t + 12*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + (1-3*x)^(-1/3) satisfies the autonomous differential equation A'(x) = (1+A(x))^4.
%F A035469 The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-3*x)*dG/dx, from which follows the recurrence given above.
%F A035469 The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^4*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A049029 (D = (1+x)^5*d/dx).
%F A035469 (End)
%F A035469 Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k>=0} k*(k+3)*(k+6)*...*(k+3*(n-1))*x^k/k!. - _Peter Bala_, Jun 23 2014
%e A035469 Triangle starts:
%e A035469      {1}
%e A035469      {4,    1}
%e A035469     {28,   12,    1}
%e A035469    {280,  160,   24,    1}
%e A035469   {3640, 2520,  520,   40,    1}
%t A035469 a[n_, m_] /; n >= m >= 1 := a[n, m] = (3(n-1) + m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover_, Jul 22 2011 *)
%t A035469 rows = 9;
%t A035469 a[n_, m_] := BellY[n, m, Table[Product[3k+1, {k, 0, j}], {j, 0, rows}]];
%t A035469 Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018 *)
%o A035469 (Sage) # uses[bell_matrix from A264428]
%o A035469 # Adds a column 1,0,0,0, ... at the left side of the triangle.
%o A035469 bell_matrix(lambda n: A007559(n+1) , 9) # _Peter Luschny_, Jan 19 2016
%Y A035469 a(n, m)=: S2(4, n, m) is the fourth triangle of numbers in the sequence S2(1, n, m) := A008277(n, m) (Stirling 2nd kind), S2(2, n, m) := A008297(n, m) (Lah), S2(3, n, m) := A035342(n, m). a(n, 1)= A007559(n).
%Y A035469 Row sums: A049119(n), n >= 1.
%Y A035469 Cf. A094638.
%K A035469 easy,nice,nonn,tabl
%O A035469 1,2
%A A035469 _Wolfdieter Lang_
%E A035469 New name from _Peter Luschny_, Jan 19 2016