A035481 Number of n X n symmetric matrices whose first row is 1..n and whose rows and columns are all permutations of 1..n.
1, 1, 1, 1, 4, 6, 456, 6240, 10936320, 1225566720, 130025295912960, 252282619805368320, 2209617218725251404267520, 98758655816833727741338583040
Offset: 0
Examples
a(3) = 1 because after 123 in the first row and column, 213 is not allowed for the second row, so it must be 231 and thus the third row is 312.
Links
- Brendan D. McKay and Ian M. Wanless, Enumeration of Latin squares with conjugate symmetry, J. Combin. Des. 30 (2022), 105-130, also on Enumeration of Latin squares with conjugate symmetry, arXiv:2104.07902 [math.CO], 2021. Table 2 p. 7.
Programs
-
Mathematica
(* This script is not suitable for n > 6 *) matrices[n_ /; n > 1] := Module[{a, t, vars}, t = Table[Which[i==1, j, j==1, i, j>i, a[i, j], True, a[j, i]], {i, n}, {j, n}]; vars = Select[Flatten[t], !IntegerQ[#]& ] // Union; t /. {Reduce[And @@ (1 <= # <= n & /@ vars) && And @@ Unequal @@@ t, vars, Integers] // ToRules}]; a[0] = a[1] = 1; a[n_] := Length[ matrices[n]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 6}] (* Jean-François Alcover, Jan 04 2016 *)
Extensions
a(10)-a(13) from Ian Wanless, Oct 20 2019
Comments