cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035484 Numbers n such that fractional part of e^(Pi*sqrt(n)) > 0.99.

This page as a plain text file.
%I A035484 #17 Sep 04 2017 19:22:32
%S A035484 6,17,18,22,25,37,43,58,59,67,74,149,163,177,232,267,326,386,522,566,
%T A035484 638,719,790,792,928,986,1014,1169,1245,1257,1293,1326,1467,1556,1850,
%U A035484 1872,1960,2061,2086,2160,2196,2208,2278,2403,2438,2551,2653,2795,2829
%N A035484 Numbers n such that fractional part of e^(Pi*sqrt(n)) > 0.99.
%C A035484 Equivalently, let f(n) = exp(Pi*sqrt(n)); sequence gives numbers n such that ceiling(f(n)) - f(n) < 1/10^2. - _Artur Jasinski_, Jan 03 2007
%H A035484 Michael De Vlieger, <a href="/A035484/b035484.txt">Table of n, a(n) for n = 1..1000</a>
%e A035484 e^(Pi*sqrt(163)) = 262537412640768743.9999999999992
%t A035484 a = {}; Do[If[(1 - (Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]]) > 0) && (1 - ( Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]])< 10^(-2)), AppendTo[a, x]], {x, 1, 1000}]; a (* _Artur Jasinski_, Jan 03 2007 *)
%t A035484 Block[{$MaxExtraPrecision = 1000}, Select[Range@ 3000, And[1 - (#1 - #2) > 0, 1 - (#1 - #2) < 10^(-2)] & @@ {#, Floor@ #} &@ Exp[Pi*Sqrt[#]] &]] (* _Michael De Vlieger_, Sep 04 2017 *)
%Y A035484 Cf. A019296, A127022, A127023, A127024, A127025.
%K A035484 nonn
%O A035484 1,1
%A A035484 _Erich Friedman_
%E A035484 Edited by _N. J. A. Sloane_, Jul 03 2008 at the suggestion of _R. J. Mathar_