This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035489 #29 Apr 16 2023 08:43:07 %S A035489 1,6,18,39,81,157,309,576,1042,1885,3338,6011,10569,18321,31851,55717, %T A035489 95320,163580,278208,478807,814329,1374926,2328359,3963782,6656320, %U A035489 11209356,18772741,31524784,53186481,88750072,148471480,247281057,415039507,692181268 %N A035489 Main diagonal of the Stolarsky array. %C A035489 General solution for the Stolarsky array by row, column is given by the PARI/GP program. Solution for the main diagonal in A035506 is found by setting r=c. If computing large terms for the Stolarsky array, increase the default precision of PARI/GP to accommodate the size. - _Randall L Rathbun_, Jan 25 2002 %H A035489 Alois P. Heinz, <a href="/A035489/b035489.txt">Table of n, a(n) for n = 0..4765</a> %H A035489 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a> %p A035489 a:= proc(n) local t, a, b; %p A035489 t:= (1+sqrt(5))/2; %p A035489 a:= floor(n*(t+1)+1+t/2); %p A035489 b:= round(a*t); %p A035489 (<<0|1>, <1|1>>^n. <<a, b>>)[1, 1] %p A035489 end: %p A035489 seq(a(n), n=0..33); # _Alois P. Heinz_, Mar 22 2023 %t A035489 a[n_] := Module[{t = GoldenRatio, a, b}, %t A035489 a = Floor[n*(t+1) + 1 + t/2]; %t A035489 b = Round[a*t]; %t A035489 (MatrixPower[{{0, 1}, {1, 1}}, n].{a, b})[[1]]]; %t A035489 Table[a[n], {n, 0, 33}] (* _Jean-François Alcover_, Apr 16 2023, after _Alois P. Heinz_ *) %o A035489 (PARI) {Stolarsky(r,c)= tau=(1+sqrt(5))/2; a=floor(r*(1+tau)-tau/2); b=round(a*tau); if(c==1,a, if(c==2,b, for(i=1,c-2,d=a+b; a=b; b=d; ); d))} %Y A035489 See A007064 for references. %Y A035489 Main diagonal of A035506. %Y A035489 Cf. A001622. %K A035489 nonn,easy %O A035489 0,2 %A A035489 _N. J. A. Sloane_ %E A035489 More terms from _Randall L Rathbun_, Jan 25 2002