cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035494 Order in which record high new cards appear for first time on top of deck in Guy's shuffling problem A035485.

This page as a plain text file.
%I A035494 #22 Feb 16 2025 08:32:37
%S A035494 1,2,3,6,9,16,23,27,30,33,38,53,84,91,115,124,134,157,178,222,241,267,
%T A035494 277,298,323,368,378,407,438,450,495,496,542,546,555,561,576,581,598,
%U A035494 619,646,665,703,750,774,782,806,860,862,864,905,909,937,976,1005,1052,1056,1121,1152,1197,1241,1269,1316
%N A035494 Order in which record high new cards appear for first time on top of deck in Guy's shuffling problem A035485.
%D A035494 D. Gale, Mathematical Entertainments: "Careful Card-Shuffling and Cutting Can Create Chaos," Mathematical Intelligencer, vol. 14, no. 1, 1992, pages 54-56.
%D A035494 D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998.
%H A035494 Lars Blomberg, <a href="/A035494/b035494.txt">Table of n, a(n) for n = 1..3633</a>
%H A035494 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectShuffle.html">Perfect shuffle.</a>
%F A035494 Monotonic subsequence of A035493.
%o A035494 (Python)
%o A035494 from itertools import count, islice
%o A035494 def agen(): # generator of terms
%o A035494     deck = []; record = 1; yield 1
%o A035494     for n in count(1):
%o A035494         deck += [2*n-1, 2*n]
%o A035494         first, next = deck[:n], deck[n:2*n]
%o A035494         deck[0:2*n:2], deck[1:2*n:2] = next, first
%o A035494         if deck[0] > record: record = deck[0]; yield record
%o A035494 print(list(islice(agen(), 63))) # _Michael S. Branicky_, Aug 11 2022
%Y A035494 Cf. A035485, A035490, A035491, A035492, A035493, A035500, A035501.
%K A035494 nonn
%O A035494 1,2
%A A035494 _N. J. A. Sloane_, _Wouter Meeussen_
%E A035494 More terms from _Jud McCranie_