cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035507 Inverse Stolarsky array read by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 12, 5, 9, 20, 33, 6, 14, 25, 54, 88, 8, 17, 38, 67, 143, 232, 10, 22, 46, 101, 177, 376, 609, 11, 27, 59, 122, 266, 465, 986, 1596, 13, 30, 72, 156, 321, 698, 1219, 2583, 4180, 15, 35, 80, 190, 410, 842, 1829, 3193, 6764, 10945, 16, 41, 93, 211, 499
Offset: 0

Views

Author

Keywords

Comments

The inverse Stolarky array is the dispersion of the sequence u given by u(n) = floor(n*x + x + n + 1 - x/2), where x=(golden ratio). For a discussion of dispersions, see A191426.

Examples

			Top left hand corner of array:
  1,    4,   12,   33,   88,  232, ...
  2,    7,   20,   54,  143,  376, ...
  3,    9,   25,   67,  177,  465, ...
  5,   14,   38,  101,  266,  698, ...
  6,   17,   46,  122,  321,  842, ...
		

Crossrefs

Cf. A035506 (Stolarsky array), A191426.

Programs

  • Maple
    with(combinat, fibonacci): gold:=(1+sqrt(5))/2: c1:=n->piecewise(n<>1,round((n-1)*gold),1): c2:=n->c1(n)+floor((2*c1(n)+1)*gold/2)+1: inv_stol:=(n,k)->fibonacci(2*k-3)-1-c1(n)*fibonacci(2*k-4)+c2(n)*fibonacci(2*k-2): seq(seq(inv_stol(n+1-k,k),k=1..n),n=1..11); inv_stol2:=(n,k)->(1+c0(n))*fibonacci(2*k-3)+(1+floor((2*c0(n)+1)*gold/2))*fibonacci(2*k-2)-1:seq(seq(inv_stol2(n+1-k,k),k=1..n),n=1..11);  # C. Ronaldo, Dec 31 2004
  • Mathematica
    (* program generates the dispersion array T of the complement of increasing sequence f[n] *)
    r = 40; r1 = 12;  (* r=# rows of T, r1=# rows to show *)
    c = 40; c1 = 12;   (* c=# cols of T, c1=# cols to show *)
    x = GoldenRatio; f[n_] :=  Floor[n*x + x + n + 1 - x/2] (* f(n) is complement of column 1 *)
    mex[list_] :=
    NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1,
      Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];  (* the array T *)
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* Inverse Stolarsky array, A035507 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]
    (* array as a sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

Formula

The term in row n and column k of the inverse Stolarsky array has the following expression: a(n, k) = F(2k-3) - 1 - c1(n)*F(2k-4) + c2(n)*F(2k-2), where F is the Fibonacci sequence; c1(n)=1 if n=1, [(n-1)*tau] if n>1 (first column of the Inverse Stolarsky array) and c2(n) = c1(n) + 1 + floor((2*c1(n)+1)*tau/2) (second column of the Inverse Stolarsky array). tau = (1+sqrt(5))/2 and [] denotes the nearest integer function. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 31 2004
Also, the following recurrence holds: a(n, k) = 3*a(n, k-1) - a(n, k-2) + 1 with a(n, 1)=c1(n) and a(n, 2)=c2(n). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 31 2004

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 31 2004
Mathematica program, extended example, and comments from Clark Kimberling, Jun 03 2011