This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035509 #14 Jun 01 2019 13:49:46 %S A035509 1,7,25,101,321,1075,3426,9958,30253,92735,253731,739303,2056915, %T A035509 5899304,17108660,46137324,130016549,370248450,993480845,2766546762, %U A035509 7510827752,20798505510,58123818148,155141346542,426530329383 %N A035509 Main diagonal of Inverse Stolarsky array. %H A035509 C. Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a> %H A035509 C. Kimberling, <a href="https://doi.org/10.1090/S0002-9939-1993-1111434-0">Interspersions and dispersions</a>, Proceedings of the American Mathematical Society 117 (1993) 313-321. %H A035509 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a> %p A035509 with(combinat, fibonacci): gold:=(1+sqrt(5))/2: c1:=n->piecewise(n<>1,round((n-1)*gold),1): c2:=n->c1(n)+floor((2*c1(n)+1)*gold/2)+1: inv_stol:=(n,k)->fibonacci(2*k-3)-1-c1(n)*fibonacci(2*k-4)+c2(n)*fibonacci(2*k-2): seq(inv_stol(n,n),n=1..30); inv_stol2:=(n,k)->(1+c1(n))*fibonacci(2*k-3)+(1+floor((2*c1(n)+1)*gold/2))*fibonacci(2*k-2)-1: seq(inv_stol2(n,n),n=1..30); inv_stol3:=proc(n,k) options remember: if k=1 then RETURN(c1(n)) elif k=2 then RETURN(c2(n)) else RETURN(3*inv_stol3(n,k-1)-inv_stol3(n,k-2)+1) fi: end: : seq(inv_stol3(n,n),n=1..30); (Ronaldo) %Y A035509 Cf. A035507. %K A035509 nonn,easy %O A035509 0,2 %A A035509 _N. J. A. Sloane_ %E A035509 More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 01 2005