cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035513 Wythoff array read by falling antidiagonals.

This page as a plain text file.
%I A035513 #212 Jun 26 2025 15:27:15
%S A035513 1,2,4,3,7,6,5,11,10,9,8,18,16,15,12,13,29,26,24,20,14,21,47,42,39,32,
%T A035513 23,17,34,76,68,63,52,37,28,19,55,123,110,102,84,60,45,31,22,89,199,
%U A035513 178,165,136,97,73,50,36,25,144,322,288,267,220,157,118,81,58,41,27,233,521
%N A035513 Wythoff array read by falling antidiagonals.
%C A035513 T(0,0)=1, T(0,1)=2,...; y^2-x^2-xy<y if and only if there exist (i,j) with x=T(i,2j) and y=T(i,2j+1). - Claude Lenormand (claude.lenormand(AT)free.fr), Mar 17 2001
%C A035513 Inverse of sequence A064274 considered as a permutation of the nonnegative integers. - _Howard A. Landman_, Sep 25 2001
%C A035513 The Wythoff array W consists of all the Wythoff pairs (x(n),y(n)), where x=A000201 and y=A001950, so that W contains every positive integer exactly once. The differences T(i,2j+1)-T(i,2j) form the Wythoff difference array, A080164, which also contains every positive integer exactly once. - _Clark Kimberling_, Feb 08 2003
%C A035513 For n>2 the determinant of any n X n contiguous subarray of A035513 (as a square array) is 0. - _Gerald McGarvey_, Sep 18 2004
%C A035513 From _Clark Kimberling_, Nov 14 2007: (Start)
%C A035513 Except for initial terms in some cases:
%C A035513 (Row 1) = A000045
%C A035513 (Row 2) = A000032
%C A035513 (Row 3) = A006355
%C A035513 (Row 4) = A022086
%C A035513 (Row 5) = A022087
%C A035513 (Row 6) = A000285
%C A035513 (Row 7) = A022095
%C A035513 (Row 8) = A013655 (sum of Fibonacci and Lucas numbers)
%C A035513 (Row 9) = A022112
%C A035513 (Row 10-19) = A022113, A022120, A022121, A022379, A022130, A022382, A022088, A022136, A022137, A022089
%C A035513 (Row 20-28) = A022388, A022096, A022090, A022389, A022097, A022091, A022390, A022098, A022092
%C A035513 (Column 1) = A003622 = AA Wythoff sequence
%C A035513 (Column 2) = A035336 = BA Wythoff sequence
%C A035513 (Column 3) = A035337 = ABA Wythoff sequence
%C A035513 (Column 4) = A035338 = BBA Wythoff sequence
%C A035513 (Column 5) = A035339 = ABBA Wythoff sequence
%C A035513 (Column 6) = A035340 = BBBA Wythoff sequence
%C A035513 Main diagonal = A020941. (End)
%C A035513 The Wythoff array is the dispersion of the sequence given by floor(n*x+x-1), where x=(golden ratio). See A191426 for a discussion of dispersions. - _Clark Kimberling_, Jun 03 2011
%C A035513 If u and v are finite sets of numbers in a row of the Wythoff array such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. See A160009 (row 1 products), A274286 (row 2), A274287 (row 3), A274288 (row 4). - _Clark Kimberling_, Jun 17 2016
%C A035513 All columns of the Wythoff array are compound Wythoff sequences. This follows from the main theorem in the 1972 paper by Carlitz, Scoville and Hoggatt. For an explicit expression see Theorem 10 in Kimberling's paper from 2008 in JIS. - _Michel Dekking_, Aug 31 2017
%C A035513 The Wythoff array can be viewed as an infinite graph over the set of nonnegative integers, built as follows: start with an empty graph; for all n = 0, 1, ..., create an edge between n and the sum of the degrees of all i < n. Finally, remove vertex 0. In the resulting graph, the connected components are chains and correspond to the rows of the Wythoff array. - _Luc Rousseau_, Sep 28 2017
%C A035513 Suppose that h < k are consecutive terms in a row of the Wythoff array. If k is in an even numbered column, then h = floor(k/tau); otherwise, h = -1 + floor(k/tau). - _Clark Kimberling_, Mar 05 2020
%C A035513 From _Clark Kimberling_, May 26 2020: (Start)
%C A035513 For k > = 0, column k shows the numbers m having F(k+1) as least term in the Zeckendorf representation of m. For n >= 1, let r(n,k) be the number of terms in column k that are <= n.  Then n/r(n,k) = n/(F(k+1)*tau + F(k)*(n-1)), by Bottomley's formula, so that the limiting ratio is 1/(F(k+1)*tau + F(k)).  Summing over all k gives Sum_{k>=0} 1/(F(k+1)*tau + F(k)) = 1.  Thus, in the limiting sense:
%C A035513 38.19...% of the numbers m have least term 1;
%C A035513 23.60...% have least term 2;
%C A035513 14.58...% have least term 3;
%C A035513 9.01...% have least term 5, etc. (End)
%C A035513 Named after the Dutch mathematician Willem Abraham Wythoff (1865-1939). - _Amiram Eldar_, Jun 11 2021
%C A035513 From _Clark Kimberling_, Jun 04 2025: (Start)
%C A035513 Let u(n) = (T(n,1),T(n,2)) mod 2.  The positive integers (A000027) are partitioned into 4 sets (sequences):
%C A035513 {n : u(n) = (0,0)} = (3, 5, 9, 15, 19, 25, 29,...) = 1 + 2*A190429
%C A035513 {n:  u(n) = (0,1)} = (2, 6, 12, 16, 18, 22, 28,...) = A191331
%C A035513 {n : u(n) = (1,0)} = (1, 7, 11, 13, 17, 21, 23,...) = A086843
%C A035513 {n:  u(n) = (1,1)} = (4, 8, 10, 14, 20, 24, 26,...) = A191330.
%C A035513 Let v(n) = (T(n,1),T(n,2)) mod 3.  The positive integers are partitioned into 9 sets (sequences):
%C A035513 {n : v(n) = (0,0)} = (4, 13, 19, 28, 43, 52,...) = 1 + 3*A190434
%C A035513 {n:  v(n) = (0,1)} = (3, 12, 27, 36, 42, 51,...) = 3*A140399
%C A035513 {n : v(n) = (0,2)} = (5, 11, 20, 35, 44, 50,...) = 2 + 3*A190439
%C A035513 {n:  v(n) = (1,0)} = (9, 18, 24, 33, 48, 57,...) = 3*A140400
%C A035513 {n:  v(n) = (1,1)} = (2, 8, 17, 26, 32, 41,...) = A384601
%C A035513 {n : v(n) = (1,2)} = (1, 10, 16, 25, 34, 40,...) = A384602
%C A035513 {n:  v(n) = (2,0)} = (14, 23, 29, 38, 47, 53,...) = 2 + 3*A190438
%C A035513 {n:  v(n) = (2,1)} = (7, 22, 31, 37, 46, 61,...) = 1 + 3*A190433
%C A035513 {n : v(n) = (2,2)} = (6, 15, 21, 30, 39, 45,...) = 3*A140398.
%C A035513 Conjecture: If m >= 2, then {(T(n,1), T(n,2)) mod m} has cardinality m^2. (End)
%D A035513 John H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.
%D A035513 Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.
%H A035513 Alois P. Heinz, <a href="/A035513/b035513.txt">Table of n, a(n) for n = 1..5151</a>
%H A035513 Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/52-5/Anderson.pdf">More Properties of the Zeckendorf Array</a>, Fib. Quart. 52-5 (2014), 15-21.
%H A035513 L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/10-1/carlitz1.pdf">Fibonacci representations</a>, Fib. Quart., Vol. 10, No. 1 (1972), pp. 1-28.
%H A035513 Code Golf Stack Exchange, <a href="https://codegolf.stackexchange.com/questions/183186/new-order-5-where-fibonacci-and-beatty-meet-at-wythoff">New Order #5: where Fibonacci and Beatty meet at Wythoff</a>.
%H A035513 J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, and N. J. A. Sloane, <a href="/A269725/a269725.txt">On Kimberling Sums and Para-Fibonacci Sequences</a>, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997.
%H A035513 John Conway and Alex Ryba, <a href="https://doi.org/10.1007/s00283-015-9582-5">The extra Fibonacci series and the Empire State Building</a>, Math. Intelligencer, Vol. 38, No. 1 (2016), pp. 41-48.
%H A035513 Larry Ericksen and Peter G. Anderson, <a href="http://www.cs.rit.edu/~pga/k-zeck.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18. - _N. J. A. Sloane_, Jun 10 2012
%H A035513 Clark Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a>.
%H A035513 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-1/kimberling.pdf">The Zeckendorf array equals the Wythoff array</a>, Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 3-8.
%H A035513 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Kimberling/kimberling719a.html">Complementary equations and Wythoff Sequences</a>, JIS, Vol. 11 (2008), Article 08.3.3.
%H A035513 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Kimberling/kimber12.html">Lucas Representations of Positive Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
%H A035513 Clark Kimberling and Kenneth B. Stolarsky, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.123.3.267">Slow Beatty sequences, devious convergence, and partitional divergence</a>, Amer. Math. Monthly, 123, No. 2 (2016), pp. 267-273.
%H A035513 Stéphane Legendre, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/53-2/Legendre10222014.pdf">Labeled Fibonacci Trees</a>, Fibonacci Quart. 53 (2015), no. 2, 152-167.
%H A035513 A. J. Macfarlane, <a href="https://arxiv.org/abs/2405.18128">On the fibbinary numbers and the Wythoff array</a>, arXiv:2405.18128 [math.CO], 2024. See pages 1-2.
%H A035513 Casey Mongoven, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from175to192.pdf">Sonification of multiple Fibonacci-related sequences</a>, Annales Mathematicae et Informaticae, Vol. 41 (2013), pp. 175-192.
%H A035513 N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).
%H A035513 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>
%H A035513 Sam Vandervelde, <a href="http://myslu.stlawu.edu/~svanderv/fibseqnorm.pdf">On the divisibility of Fibonacci sequences by primes of index two</a>, The Fibonacci Quarterly, Vol. 50, No. 3 (2012), pp. 207-216. See Figure 1.
%H A035513 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WythoffArray.html">Wythoff Array</a>.
%H A035513 Wikipedia, <a href="https://en.wikipedia.org/wiki/Wythoff_array">Wythoff array</a>.
%H A035513 Pedro Zanetti, <a href="/A035513/a035513.txt">C++ code snippet, for generating this sequence</a>.
%H A035513 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A035513 T(n, k) = Fib(k+1)*floor[n*tau]+Fib(k)*(n-1) where tau = (sqrt(5)+1)/2 = A001622 and Fib(n) = A000045(n). - _Henry Bottomley_, Dec 10 2001
%F A035513 T(n,-1) = n-1. T(n,0) = floor(n*tau). T(n,k) = T(n,k-1) + T(n,k-2) for k>=1. - _R. J. Mathar_, Sep 03 2016
%e A035513 The Wythoff array begins:
%e A035513    1    2    3    5    8   13   21   34   55   89  144 ...
%e A035513    4    7   11   18   29   47   76  123  199  322  521 ...
%e A035513    6   10   16   26   42   68  110  178  288  466  754 ...
%e A035513    9   15   24   39   63  102  165  267  432  699 1131 ...
%e A035513   12   20   32   52   84  136  220  356  576  932 1508 ...
%e A035513   14   23   37   60   97  157  254  411  665 1076 1741 ...
%e A035513   17   28   45   73  118  191  309  500  809 1309 2118 ...
%e A035513   19   31   50   81  131  212  343  555  898 1453 2351 ...
%e A035513   22   36   58   94  152  246  398  644 1042 1686 2728 ...
%e A035513   25   41   66  107  173  280  453  733 1186 1919 3105 ...
%e A035513   27   44   71  115  186  301  487  788 1275 2063 3338 ...
%e A035513   ...
%e A035513 The extended Wythoff array has two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
%e A035513 0     1  |   1    2    3    5    8   13   21   34   55   89  144   ...
%e A035513 1     3  |   4    7   11   18   29   47   76  123  199  322  521   ...
%e A035513 2     4  |   6   10   16   26   42   68  110  178  288  466  754   ...
%e A035513 3     6  |   9   15   24   39   63  102  165  267  432  699 1131   ...
%e A035513 4     8  |  12   20   32   52   84  136  220  356  576  932 1508   ...
%e A035513 5     9  |  14   23   37   60   97  157  254  411  665 1076 1741   ...
%e A035513 6    11  |  17   28   45   73  118  191  309  500  809 1309 2118   ...
%e A035513 7    12  |  19   31   50   81  131  212  343  555  898 1453 2351   ...
%e A035513 8    14  |  22   36   58   94  152  246  398  644 1042 1686 2728   ...
%e A035513 9    16  |  25   41   66  107  173  280  453  733 1186 1919 3105   ...
%e A035513 10   17  |  27   44   71  115  186  301  487  788 1275 2063 3338   ...
%e A035513 11   19  |  30   49   79   ...
%e A035513 12   21  |  33   54   87   ...
%e A035513 13   22  |  35   57   92   ...
%e A035513 14   24  |  38   62   ...
%e A035513 15   25  |  40   65   ...
%e A035513 16   27  |  43   70   ...
%e A035513 17   29  |  46   75   ...
%e A035513 18   30  |  48   78   ...
%e A035513 19   32  |  51   83   ...
%e A035513 20   33  |  53   86   ...
%e A035513 21   35  |  56   91   ...
%e A035513 22   37  |  59   96   ...
%e A035513 23   38  |  61   99   ...
%e A035513 24   40  |  64   ...
%e A035513 25   42  |  67   ...
%e A035513 26   43  |  69   ...
%e A035513 27   45  |  72   ...
%e A035513 28   46  |  74   ...
%e A035513 29   48  |  77   ...
%e A035513 30   50  |  80   ...
%e A035513 31   51  |  82   ...
%e A035513 32   53  |  85   ...
%e A035513 33   55  |  88   ...
%e A035513 34   56  |  90   ...
%e A035513 35   58  |  93   ...
%e A035513 36   59  |  95   ...
%e A035513 37   61  |  98   ...
%e A035513 38   63  |     ...
%e A035513    ...
%e A035513 Each row of the extended Wythoff array also satisfies the Fibonacci recurrence, and may be extended to the left using this recurrence backwards.
%e A035513 From _Peter Munn_, Jun 11 2021: (Start)
%e A035513 The Wythoff array appears to have the following relationship to the traditional Fibonacci rabbit breeding story, modified for simplicity to be a story of asexual reproduction.
%e A035513 Give each rabbit a number, 0 for the initial rabbit.
%e A035513 When a new round of rabbits is born, allocate consecutive numbers according to 2 rules (the opposite of many cultural rules for inheritance precedence): (1) newly born child of Rabbit 0 gets the next available number; (2) the descendants of a younger child of any given rabbit precede the descendants of an older child of the same rabbit.
%e A035513 Row n of the Wythoff array lists the children of Rabbit n (so Rabbit 0's children have the Fibonacci numbers: 1, 2, 3, 5, ...). The generation tree below shows rabbits 0 to 20. It is modified so that each round of births appears on a row.
%e A035513                                                                  0
%e A035513                                                                  :
%e A035513                                        ,-------------------------:
%e A035513                                        :                         :
%e A035513                        ,---------------:                         1
%e A035513                        :               :                         :
%e A035513               ,--------:               2               ,---------:
%e A035513               :        :               :               :         :
%e A035513         ,-----:        3         ,-----:         ,-----:         4
%e A035513         :     :        :         :     :         :     :         :
%e A035513      ,--:     5     ,--:     ,---:     6     ,---:     7     ,---:
%e A035513      :  :     :     :  :     :   :     :     :   :     :     :   :
%e A035513   ,--:  8  ,--:  ,--:  9  ,--:  10  ,--:  ,--:  11  ,--:  ,--:  12
%e A035513   :  :  :  :  :  :  :  :  :  :   :  :  :  :  :   :  :  :  :  :   :
%e A035513   : 13  :  : 14  : 15  :  : 16   :  : 17  : 18   :  : 19  : 20   :
%e A035513 The extended array's nontrivial extra column (A000201) gives the number that would have been allocated to the first child of Rabbit n, if Rabbit n (and only Rabbit n) had started breeding one round early.
%e A035513 (End)
%p A035513 W:= proc(n,k) Digits:= 100; (Matrix([n, floor((1+sqrt(5))/2* (n+1))]). Matrix([[0,1], [1,1]])^(k+1))[1,2] end: seq(seq(W(n, d-n), n=0..d), d=0..10); # _Alois P. Heinz_, Aug 18 2008
%p A035513 A035513 := proc(r, c)
%p A035513     option remember;
%p A035513     if c = 1 then
%p A035513         A003622(r) ;
%p A035513     else
%p A035513         A022342(1+procname(r, c-1)) ;
%p A035513     end if;
%p A035513 end proc:
%p A035513 seq(seq(A035513(r,d-r),r=1..d-1),d=2..15) ; # _R. J. Mathar_, Jan 25 2015
%t A035513 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[ W[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
%o A035513 (PARI) T(n,k)=(n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k)
%o A035513 for(k=0,9,for(n=1,k, print1(T(n,k+1-n)", "))) \\ _Charles R Greathouse IV_, Mar 09 2016
%o A035513 (Python)
%o A035513 from sympy import fibonacci as F, sqrt
%o A035513 import math
%o A035513 tau = (sqrt(5) + 1)/2
%o A035513 def T(n, k): return F(k + 1)*int(math.floor(n*tau)) + F(k)*(n - 1)
%o A035513 for n in range(1, 11): print([T(k, n - k + 1) for k in range(1, n + 1)]) # _Indranil Ghosh_, Apr 23 2017
%o A035513 (Python)
%o A035513 from math import isqrt, comb
%o A035513 from gmpy2 import fib2
%o A035513 def A035513(n):
%o A035513     a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
%o A035513     x = n-comb(a,2)
%o A035513     b, c = fib2(a-x+2)
%o A035513     return b*(x+isqrt(5*x*x)>>1)+c*(x-1) # _Chai Wah Wu_, Jun 26 2025
%Y A035513 See comments above for more cross-references.
%Y A035513 Cf. A003622, A064274 (inverse), A083412 (transpose), A000201, A001950, A080164, A003603, A265650, A019586 (row that contains n).
%Y A035513 For two versions of the extended Wythoff array, see A287869, A287870.
%K A035513 nonn,tabl,easy,nice
%O A035513 1,2
%A A035513 _N. J. A. Sloane_
%E A035513 Comments about the extended Wythoff array added by _N. J. A. Sloane_, Mar 07 2016