This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035528 #21 Nov 17 2021 08:23:55 %S A035528 0,1,1,3,3,6,9,13,19,28,42,57,84,115,164,227,313,429,588,799,1079, %T A035528 1461,1952,2617,3480,4627,6111,8072,10604,13905,18181,23701,30828, %U A035528 39990,51763,66822,86124,110687,142039,181841,232409,296401,377419,479635,608558,770818 %N A035528 Euler transform of A027656(n-1). %C A035528 Also the weigh transform of A003602. - _John Keith_, Nov 17 2021 %H A035528 Vaclav Kotesovec, <a href="/A035528/b035528.txt">Table of n, a(n) for n = 0..5000</a> %H A035528 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], 2015-2016. %F A035528 a(n) ~ A^(1/2) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) + Pi^2 * n^(1/3)/(3*2^(8/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(4/3)) / (sqrt(3*Pi) * 2^(71/72) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Oct 02 2015 %t A035528 nmax = 50; CoefficientList[Series[-1 + Product[1/(1 - x^(2*k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 19 2015 *) %t A035528 nmax = 100; Flatten[{0, Rest[CoefficientList[Series[E^Sum[1/j*x^j/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]]}] (* _Vaclav Kotesovec_, Oct 10 2015 *) %Y A035528 Cf. A000219, A003602, A052847, A263150, A263352, A262876, A263136, A263141. %K A035528 nonn %O A035528 0,4 %A A035528 _Christian G. Bower_