A035529 A convolution triangle of numbers obtained from A034171.
1, 6, 1, 42, 12, 1, 315, 120, 18, 1, 2457, 1134, 234, 24, 1, 19656, 10458, 2673, 384, 30, 1, 160056, 95256, 28539, 5148, 570, 36, 1, 1320462, 861597, 292572, 62532, 8775, 792, 42, 1, 11003850, 7760610, 2920347, 713664, 119565, 13770, 1050, 48, 1
Offset: 1
Examples
Triangle begins: 1, 6, 1; 42, 12, 1; 315, 120, 18, 1; 2457, 1134, 234, 24, 1; 19656, 10458, 2673, 384, 30, 1; ...
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Programs
-
Mathematica
a[n_, m_] /; n - 1 >= m >= 1 := (m*a[n - 1, m - 1])/n + (3*(m + 3*(n - 1))*a[n - 1, m])/n; a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[n_, n_] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* Jean-François Alcover, Jul 10 2012, from formula *)
Formula
a(n+1, m) = 3*(3*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n
G.f. for column m: ((-1+(1-9*x)^(-1/3))/3)^m.
Comments