This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035544 #19 Oct 13 2022 11:19:29 %S A035544 1,0,1,0,3,0,4,0,10,0,13,0,28,0,37,0,72,0,96,0,172,0,230,0,391,0,522, %T A035544 0,846,0,1129,0,1766,0,2348,0,3564,0,4722,0,6992,0,9226,0,13371,0, %U A035544 17568,0,25006,0,32708,0,45817,0,59668,0,82430,0,106874,0,145830,0,188260,0 %N A035544 Number of partitions of n with equal number of parts congruent to each of 1 and 3 (mod 4). %C A035544 From _Gus Wiseman_, Oct 12 2022: (Start) %C A035544 Also the number of integer partitions of n whose skew-alternating sum is 0, where we define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ... These are the conjugates of the partitions described in the name. For example, the a(0) = 1 through a(8) = 10 partitions are: %C A035544 () . (11) . (22) . (33) . (44) %C A035544 (211) (321) (422) %C A035544 (1111) (2211) (431) %C A035544 (111111) (2222) %C A035544 (3221) %C A035544 (3311) %C A035544 (22211) %C A035544 (221111) %C A035544 (2111111) %C A035544 (11111111) %C A035544 The ordered version (compositions) is A138364 %C A035544 These partitions are ranked by A357636, reverse A357632. %C A035544 The reverse version is A357640 (aerated). %C A035544 Cf. A357623, A357629, A357630, A357634, A357646, A357705. %C A035544 (End) %e A035544 From _Gus Wiseman_, Oct 12 2022: (Start) %e A035544 The a(0) = 1 through a(8) = 10 partitions: %e A035544 () . (2) . (4) . (6) . (8) %e A035544 (22) (42) (44) %e A035544 (31) (222) (53) %e A035544 (321) (62) %e A035544 (71) %e A035544 (422) %e A035544 (431) %e A035544 (2222) %e A035544 (3221) %e A035544 (3311) %e A035544 (End) %t A035544 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A035544 Table[Length[Select[IntegerPartitions[n],skats[#]==0&]],{n,0,30}] (* _Gus Wiseman_,Oct 12 2022 *) %Y A035544 The case with at least one odd part is A035550. %Y A035544 Removing zeros gives A035594. %Y A035544 Central column k=0 of A357638. %Y A035544 These partitions are ranked by A357707. %Y A035544 A000041 counts integer partitions. %Y A035544 A344651 counts partitions by alternating sum, ordered A097805. %Y A035544 Cf. A035363, A053251, A298311, A357189, A357487, A357488. %K A035544 nonn %O A035544 0,5 %A A035544 _Olivier Gérard_ %E A035544 More terms from _David W. Wilson_