cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035592 Number of partitions of 3n with same number of parts == 1 (mod 3) and == 2 (mod 3).

This page as a plain text file.
%I A035592 #17 Mar 02 2025 22:55:58
%S A035592 1,2,6,14,32,66,134,256,480,868,1540,2664,4536,7574,12474,20234,32428,
%T A035592 51324,80388,124582,191310,291114,439394,657936,978054,1443684,
%U A035592 2117136,3085174,4469368,6437742,9223324,13145792,18644484,26317916,36981828
%N A035592 Number of partitions of 3n with same number of parts == 1 (mod 3) and == 2 (mod 3).
%H A035592 Alois P. Heinz, <a href="/A035592/b035592.txt">Table of n, a(n) for n = 0..1000</a>
%H A035592 Mircea Merca, <a href="https://doi.org/10.1016/j.jcta.2025.106020">Truncated forms of MacMahon's q-series</a>, Journal of Combinatorial Theory, Series A, Volume 213, 106020 (2025). See p. 8.
%F A035592 a(n) = A035536(3*n).
%F A035592 G.f.: (Sum_{k>=0} (-1)^k * x^(k * (k + 1)/2)) / (Product_{k>0} 1 - x^k)^3. - _Michael Somos_, Jul 28 2003
%o A035592 (PARI) {a(n) = if( n<0, 0, polcoeff( sum( k=0,(sqrtint(1 + 8*n) - 1)\2, (-1)^k * x^((k+k^2)/2)) / eta(x + x * O(x^n))^3, n))} /* _Michael Somos_, Jul 28 2003 */
%Y A035592 Cf. A035536.
%K A035592 nonn
%O A035592 0,2
%A A035592 _Olivier Gérard_
%E A035592 More terms from _David W. Wilson_