cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035604 Number of points of L1 norm 10 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 40, 402, 2720, 14002, 58728, 209762, 658048, 1854882, 4780008, 11414898, 25534368, 53972178, 108568488, 209070018, 387328512, 693230658, 1202893992, 2029779538, 3339504032, 5369283570, 8453107432, 13053926690, 19804348032, 29557550050, 43450388072
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A035607.

Programs

  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    f[d_, m_] := Sum[2^i*Binomial[d, i]*Binomial[m-1, i-1], {i, 1, Min[d, m]}];
    a[n_] := f[n, 10];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 24 2017, from Maple *)
  • PARI
    x='x+O('x^99); concat(0, Vec(2*x*(1+x)^9/(1-x)^11)) \\ Altug Alkan, Mar 12 2018

Formula

a(n) = 2n^2/14175 * (2n^8 + 120n^6 + 1806n^4 + 7180n^2 + 5067).
G.f.: 2*x*(1+x)^9/(1-x)^11. - Colin Barker, Apr 15 2012
a(n) = 2*A099197(n). - R. J. Mathar, Dec 10 2013
a(n) = a(n-1) + A035603(n) + A035603(n-1). - Bruce J. Nicholson, Mar 11 2018