This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035614 #43 Sep 18 2022 14:31:54 %S A035614 0,1,2,0,3,0,1,4,0,1,2,0,5,0,1,2,0,3,0,1,6,0,1,2,0,3,0,1,4,0,1,2,0,7, %T A035614 0,1,2,0,3,0,1,4,0,1,2,0,5,0,1,2,0,3,0,1,8,0,1,2,0,3,0,1,4,0,1,2,0,5, %U A035614 0,1,2,0,3,0,1,6,0,1,2,0,3 %N A035614 Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 0) contains n+1. %C A035614 This is probably the same as the "Fibonacci ruler function" mentioned by Knuth. - _N. J. A. Sloane_, Aug 03 2012 %C A035614 From _Amiram Eldar_, Mar 10 2021: (Start) %C A035614 a(n) is the number of the trailing zeros in the Zeckendorf representation of (n+1) (A014417). %C A035614 The asymptotic density of the occurrences of k is 1/phi^(k+2), where phi is the golden ratio (A001622). %C A035614 The asymptotic mean of this sequence is phi. (End) %D A035614 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179. %H A035614 Reinhard Zumkeller, <a href="/A035614/b035614.txt">Table of n, a(n) for n = 0..10000</a> %H A035614 Casey Mongoven, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from175to192.pdf">Sonification of multiple Fibonacci-related sequences</a>, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192. %H A035614 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a> %F A035614 The segment between the first M and the first M+1 is given by the segment before the first M-1. %F A035614 a(n) = A122840(A014417(n + 1)). - _Indranil Ghosh_, Jun 09 2017 %t A035614 max = 81; wy = Table[(n-k)*Fibonacci[k] + Fibonacci[k+1]*Floor[ GoldenRatio*(n - k + 1)], {n, 1, max}, {k, 1, n}]; a[n_] := Position[wy, n][[1, 2]]-1; Table[a[n], {n, 1, max}] (* _Jean-François Alcover_, Nov 02 2011 *) %o A035614 (Haskell) %o A035614 a035614 = a122840 . a014417 . (+ 1) -- _Reinhard Zumkeller_, Mar 10 2013 %o A035614 (Python) %o A035614 from sympy import fibonacci %o A035614 def a122840(n): return len(str(n)) - len(str(int(str(n)[::-1]))) %o A035614 def a014417(n): %o A035614 k=0 %o A035614 x=0 %o A035614 while n>0: %o A035614 k=0 %o A035614 while fibonacci(k)<=n: k+=1 %o A035614 x+=10**(k - 3) %o A035614 n-=fibonacci(k - 1) %o A035614 return x %o A035614 def a(n): return a122840(a014417(n + 1)) # _Indranil Ghosh_, Jun 09 2017, after Haskell code by _Reinhard Zumkeller_ %Y A035614 Cf. A000045, A001622, A014417, A019586, A035513, A035612, A122840, A139764. %K A035614 nonn,nice,easy %O A035614 0,3 %A A035614 _J. H. Conway_ and _N. J. A. Sloane_