A035618 Number of partitions of n into parts 3k and 3k+1 with at least one part of each type.
0, 0, 0, 1, 1, 1, 4, 4, 4, 10, 11, 11, 22, 25, 26, 44, 51, 54, 84, 98, 105, 152, 178, 193, 266, 312, 341, 452, 528, 581, 749, 873, 964, 1214, 1409, 1561, 1930, 2234, 2479, 3018, 3478, 3866, 4647, 5339, 5937, 7061, 8081, 8991, 10594, 12089, 13447, 15721
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 75 terms from Robert Price)
Programs
-
Mathematica
nmax = 52; kmax = nmax/3; s1 = Range[1, nmax/3]*3; s2 = Range[0, nmax/3]*3 + 1; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *) nmax = 52; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(3 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(3 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020*)
Formula
G.f.: (-1 + 1/Product_{k>=1} (1 - x^(3 k)))*(-1 + 1/Product_{k>=0} (1 - x^(3 k + 1))). - Robert Price, Aug 16 2020