This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035620 #15 Aug 16 2020 16:32:02 %S A035620 0,0,1,1,2,4,5,7,11,14,19,26,33,43,55,70,88,111,137,170,208,256,311, %T A035620 378,456,551,658,790,940,1119,1325,1570,1847,2179,2554,2996,3499,4088, %U A035620 4753,5533,6414,7436,8593,9931,11439,13180,15140,17391,19926,22827 %N A035620 Number of partitions of n into parts 3k+1 and 3k+2 with at least one part of each type. %H A035620 Alois P. Heinz, <a href="/A035620/b035620.txt">Table of n, a(n) for n = 1..1000</a> (first 80 terms from Robert Price) %F A035620 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(3 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(3 k + 2))). - _Robert Price_, Aug 16 2020 %t A035620 nmax = 50; s1 = Range[0, nmax/3]*3 + 1; s2 = Range[0, nmax/3]*3 + 2; %t A035620 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035620 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 06 2020 *) %t A035620 nmax = 50; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(3 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(3 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020*) %Y A035620 Cf. A035441-A035468, A035618-A035619, A035621-A035699. %K A035620 nonn %O A035620 1,5 %A A035620 _Olivier Gérard_