This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035622 #16 Aug 16 2020 16:32:51 %S A035622 0,0,0,0,0,0,1,0,1,0,4,0,4,0,10,0,11,0,22,0,25,0,44,0,51,0,83,0,98,0, %T A035622 149,0,177,0,259,0,309,0,436,0,521,0,716,0,857,0,1151,0,1376,0,1816,0, %U A035622 2170,0,2818,0,3361,0,4309,0,5132,0,6502,0,7728,0,9695,0,11501,0,14298 %N A035622 Number of partitions of n into parts 4k and 4k+2 with at least one part of each type. %H A035622 Alois P. Heinz, <a href="/A035622/b035622.txt">Table of n, a(n) for n = 0..2000</a> (first 101 terms from Robert Price) %F A035622 G.f.: (-1 + 1/Product_{k>=1} (1 - x^(4 k)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 2))). - _Robert Price_, Aug 16 2020 %t A035622 nmax = 70; s1 = Range[1, nmax/4]*4; s2 = Range[0, nmax/4]*4 + 2; %t A035622 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035622 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 0, nmax}] (* _Robert Price_, Aug 06 2020 *) %t A035622 nmax = 70; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020*) %Y A035622 Bisections give: A006477 (even part), A000004 (odd part). %Y A035622 Cf. A035441-A035468, A035618-A035621, A035623-A035699. %K A035622 nonn %O A035622 0,11 %A A035622 _Olivier Gérard_