This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035625 #15 Aug 16 2020 16:33:58 %S A035625 0,0,0,1,1,1,2,4,4,5,7,10,12,14,18,24,28,33,41,50,59,70,84,100,117, %T A035625 137,161,188,219,254,295,341,393,453,520,595,682,780,889,1011,1150, %U A035625 1307,1481,1673,1893,2140,2411,2713,3053,3433,3851,4313,4833,5411 %N A035625 Number of partitions of n into parts 4k+1 and 4k+3 with at least one part of each type. %H A035625 Alois P. Heinz, <a href="/A035625/b035625.txt">Table of n, a(n) for n = 1..1000</a> (first 100 terms from Robert Price) %F A035625 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(4 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 3))). - _Robert Price_, Aug 16 2020 %t A035625 nmax = 54; s1 = Range[0, nmax/4]*4 + 1; s2 = Range[0, nmax/4]*4 + 3; %t A035625 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035625 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 06 2020 *) %t A035625 nmax = 54; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020 *) %Y A035625 Cf. A035441-A035468, A035618-A035624, A035626-A035699. %K A035625 nonn %O A035625 1,7 %A A035625 _Olivier Gérard_