This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035626 #21 Aug 16 2020 16:34:19 %S A035626 0,0,0,0,1,0,1,1,3,1,4,3,7,4,10,8,15,11,21,18,30,24,42,37,56,50,78,70, %T A035626 102,95,137,129,179,171,236,227,303,297,395,386,502,501,643,641,814, %U A035626 820,1030,1041,1291,1317,1622,1652,2018,2075,2509,2582,3107,3212,3834 %N A035626 Number of partitions of n into parts 4k+2 and 4k+3 with at least one part of each type. %H A035626 Alois P. Heinz, <a href="/A035626/b035626.txt">Table of n, a(n) for n = 1..5000</a> (first 100 terms from Robert Price) %F A035626 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(4 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 3))). - _Robert Price_, Aug 16 2020 %t A035626 nmax = 59; s1 = Range[0, nmax/4]*4 + 2; s2 = Range[0, nmax/4]*4 + 3; %t A035626 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035626 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 06 2020 *) %t A035626 nmax = 59; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020 *) %Y A035626 Bisection of A035695 (even part). %Y A035626 Cf. A035441-A035468, A035618-A035625, A035627-A035699. %K A035626 nonn %O A035626 1,9 %A A035626 _Olivier Gérard_