This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035630 #19 Aug 16 2020 17:07:42 %S A035630 0,0,0,0,0,0,0,0,1,0,0,0,1,3,0,0,1,3,6,0,1,3,7,11,1,3,7,14,19,3,7,15, %T A035630 26,32,7,15,29,46,51,15,30,53,76,81,30,56,91,124,126,57,98,152,195, %U A035630 195,101,167,245,304,296,174,274,388,461,448,289,441,598,696,668,470 %N A035630 Number of partitions of n into parts 5k and 5k+4 with at least one part of each type. %H A035630 Robert Price, <a href="/A035630/b035630.txt">Table of n, a(n) for n = 1..1000</a> %F A035630 G.f.: (-1 + 1/Product_{k>=0} (1-x^(5k+4)))*(-1 + 1/Product_{k>=1} (1-x^(5k))). - _Robert Price_, Aug 07 2020 %t A035630 nmax = 70; s1 = Range[1, nmax/5]*5; s2 = Range[0, nmax/5]*5 + 4; %t A035630 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035630 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 06 2020 *) %t A035630 nmax = 70; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(5 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(5 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 06 2020 *) %Y A035630 Cf. A035441-A035468, A035618-A035629, A035631-A035699. %K A035630 nonn %O A035630 1,14 %A A035630 _Olivier Gérard_