A035634 Number of partitions of n into parts 5k+2 and 5k+3 with at least one part of each type.
0, 0, 0, 0, 1, 0, 1, 1, 1, 3, 2, 3, 4, 4, 7, 6, 9, 10, 11, 16, 15, 20, 23, 25, 32, 34, 41, 47, 52, 63, 68, 80, 90, 101, 116, 129, 147, 166, 184, 210, 232, 262, 292, 326, 363, 405, 450, 501, 554, 617, 681, 756, 834, 924, 1015, 1125, 1235, 1363, 1498, 1647, 1809
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000 (first 100 terms from Robert Price)
Programs
-
Mathematica
nmax = 61; s1 = Range[0, nmax/5]*5 + 2; s2 = Range[0, nmax/5]*5 + 3; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 07 2020 *) nmax = 61; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(5 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(5 k + 3)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020 *)
Formula
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(5 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(5 k + 3))). - Robert Price, Aug 16 2020