This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035637 #19 Aug 16 2020 18:37:14 %S A035637 0,0,0,0,0,0,1,1,1,1,1,1,4,4,4,4,4,4,10,11,11,11,11,11,22,25,26,26,26, %T A035637 26,44,51,54,55,55,55,84,98,105,108,109,109,153,178,193,200,203,204, %U A035637 270,313,341,356,363,366,463,532,582,611,626,633,774,884,968,1021 %N A035637 Number of partitions of n into parts 6k and 6k+1 with at least one part of each type. %H A035637 Robert Price, <a href="/A035637/b035637.txt">Table of n, a(n) for n = 1..1000</a> %F A035637 G.f.: (-1 + 1/Product_{k>=0} (1-x^(6k+1)))*(-1 + 1/Product_{k>=1} (1-x^(6k))). - _Robert Price_, Aug 07 2020 %t A035637 nmax = 64; s1 = Range[1, nmax/6]*6; s2 = Range[0, nmax/6]*6 + 1; %t A035637 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035637 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 07 2020 *) %t A035637 nmax = 64; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(6 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(6 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 07 2020 *) %Y A035637 Cf. A035441-A035468, A035618-A035636, A035638-A035699. %K A035637 nonn %O A035637 1,13 %A A035637 _Olivier Gérard_