This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035639 #21 Aug 16 2020 21:20:17 %S A035639 0,0,0,0,0,0,0,0,1,0,0,1,0,0,4,0,0,4,0,0,10,0,0,11,0,0,22,0,0,25,0,0, %T A035639 44,0,0,51,0,0,83,0,0,98,0,0,149,0,0,177,0,0,259,0,0,309,0,0,436,0,0, %U A035639 521,0,0,716,0,0,857,0,0,1151,0,0,1376,0,0,1816,0,0,2170,0,0,2818,0,0 %N A035639 Number of partitions of n into parts 6k and 6k+3 with at least one part of each type. %H A035639 Robert Price, <a href="/A035639/b035639.txt">Table of n, a(n) for n = 1..999</a> %F A035639 G.f. : (-1 + 1/Product_{k>=0} (1 - x^(6 k + 3)))*(-1 + 1/Product_{k>=1} (1 - x^(6 k))). - _Robert Price_, Aug 12 2020 %t A035639 nmax = 83; s1 = Range[1, nmax/6]*6; s2 = Range[0, nmax/6]*6 + 3; %t A035639 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035639 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 12 2020 *) %t A035639 nmax = 83; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(6 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(6 k + 3)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 12 2020 *) %Y A035639 Cf. A035441-A035468, A035618-A035638, A035640-A035699. %Y A035639 First trisection gives A006477. %K A035639 nonn %O A035639 1,15 %A A035639 _Olivier Gérard_