cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035640 Number of partitions of n into parts 6k and 6k+4 with at least one part of each type.

This page as a plain text file.
%I A035640 #19 Aug 16 2020 20:14:02
%S A035640 0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,3,0,1,0,3,0,7,0,3,0,8,0,14,0,8,0,17,0,
%T A035640 26,0,18,0,33,0,47,0,36,0,61,0,81,0,68,0,106,0,137,0,121,0,181,0,224,
%U A035640 0,209,0,296,0,362,0,347,0,478,0,570,0,565,0,750,0,890,0,894,0,1166,0
%N A035640 Number of partitions of n into parts 6k and 6k+4 with at least one part of each type.
%H A035640 Robert Price, <a href="/A035640/b035640.txt">Table of n, a(n) for n = 1..1000</a>
%F A035640 G.f. : (-1 + 1/Product_{k>=0} (1 - x^(6 k + 4)))*(-1 + 1/Product_{k>=1} (1 - x^(6 k))). - _Robert Price_, Aug 12 2020
%t A035640 nmax = 81; s1 = Range[1, nmax/6]*6; s2 = Range[0, nmax/6]*6 + 4;
%t A035640 Table[Count[IntegerPartitions[n, All, s1~Join~s2],
%t A035640 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 12 2020 *)
%t A035640 nmax = 81; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(6 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(6 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* _Robert Price_, Aug 12 2020 *)
%Y A035640 Cf. A035441-A035468, A035618-A035639, A035641-A035699.
%Y A035640 Bisections give: A035619 (even part), A000004 (odd part).
%K A035640 nonn
%O A035640 1,16
%A A035640 _Olivier Gérard_