This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035645 #16 Aug 16 2020 20:10:16 %S A035645 0,0,0,0,0,1,1,1,1,1,2,4,4,4,4,5,7,10,11,11,12,14,18,23,25,27,29,33, %T A035645 40,47,53,57,62,70,81,94,104,113,123,137,156,175,194,211,230,255,285, %U A035645 317,348,379,413,454,502,552,604,657,715,782,857,937,1021,1109,1203 %N A035645 Number of partitions of n into parts 6k+1 and 6k+5 with at least one part of each type. %H A035645 Alois P. Heinz, <a href="/A035645/b035645.txt">Table of n, a(n) for n = 1..5000</a> (first 100 terms from Robert Price) %F A035645 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(6 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(6 k + 5))). - _Robert Price_, Aug 16 2020 %t A035645 nmax = 63; s1 = Range[0, nmax/6]*6 + 1; s2 = Range[0, nmax/6]*6 + 5; %t A035645 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035645 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 13 2020 *) %t A035645 nmax = 63; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(6 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(6 k + 5)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020 *) %Y A035645 Cf. A035441-A035468, A035618-A035644, A035646-A035699. %K A035645 nonn %O A035645 1,11 %A A035645 _Olivier Gérard_