cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035648 Number of partitions of n into parts 6k+2 and 6k+5 with at least one part of each type.

This page as a plain text file.
%I A035648 #17 Aug 16 2020 20:14:24
%S A035648 0,0,0,0,0,0,1,0,1,0,1,1,3,1,3,1,4,3,7,3,8,4,10,8,14,9,17,11,22,17,28,
%T A035648 20,34,25,43,35,53,42,64,51,80,67,96,80,115,98,142,123,168,147,200,
%U A035648 178,244,217,286,257,339,310,407,371,475,439,559,523,664,618,772,726
%N A035648 Number of partitions of n into parts 6k+2 and 6k+5 with at least one part of each type.
%H A035648 Alois P. Heinz, <a href="/A035648/b035648.txt">Table of n, a(n) for n = 1..5000</a> (first 100 terms from Robert Price)
%F A035648 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(6 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(6 k + 5))). - _Robert Price_, Aug 16 2020
%t A035648 nmax = 68; s1 = Range[0, nmax/6]*6 + 2; s2 = Range[0, nmax/6]*6 + 5;
%t A035648 Table[Count[IntegerPartitions[n, All, s1~Join~s2],
%t A035648 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 13 2020 *)
%t A035648 nmax = 68; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(6 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(6 k + 5)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* _Robert Price_, Aug 16 2020 *)
%Y A035648 Cf. A035441-A035468, A035618-A035647, A035649-A035699.
%K A035648 nonn
%O A035648 1,13
%A A035648 _Olivier Gérard_