This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035652 #15 Aug 16 2020 20:26:42 %S A035652 0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,3,1,3,1,3,1,3,7,3,8,3,8,3,8,14,8,17,8, %T A035652 18,8,18,26,18,33,18,36,18,37,47,37,61,37,68,37,71,81,72,106,72,121, %U A035652 72,128,138,131,181,132,209,132,224,228,231,297,234,347,235,376,373 %N A035652 Number of partitions of n into parts 7k and 7k+2 with at least one part of each type. %H A035652 Robert Price, <a href="/A035652/b035652.txt">Table of n, a(n) for n = 1..1000</a> %F A035652 G.f. : (-1 + 1/Product_{k>=0} (1 - x^(7 k + 2)))*(-1 + 1/Product_{k>=1} (1 - x^(7 k))). - _Robert Price_, Aug 12 2020 %t A035652 nmax = 72; s1 = Range[1, nmax/7]*7; s2 = Range[0, nmax/7]*7 + 2; %t A035652 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035652 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 12 2020 *) %t A035652 nmax = 72; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 12 2020 *) %Y A035652 Cf. A035441-A035468, A035618-A035651, A035653-A035699. %K A035652 nonn %O A035652 1,16 %A A035652 _Olivier Gérard_