cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035655 Number of partitions of n into parts 7k and 7k+5 with at least one part of each type.

This page as a plain text file.
%I A035655 #16 Aug 16 2020 20:27:31
%S A035655 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,3,0,0,1,0,3,0,6,1,0,3,0,7,1,11,3,
%T A035655 0,7,1,14,3,18,7,1,15,3,25,7,30,15,3,28,7,44,15,47,29,7,51,15,72,29,
%U A035655 73,54,15,87,29,116,55,111,94,29,144,55,180,97,167,159,55,230,98,276
%N A035655 Number of partitions of n into parts 7k and 7k+5 with at least one part of each type.
%H A035655 Robert Price, <a href="/A035655/b035655.txt">Table of n, a(n) for n = 1..1000</a>
%F A035655 G.f. : (-1 + 1/Product_{k>=0} (1 - x^(7 k + 5)))*(-1 + 1/Product_{k>=1} (1 - x^(7 k))). - _Robert Price_, Aug 12 2020
%t A035655 nmax = 80; s1 = Range[1, nmax/7]*7; s2 = Range[0, nmax/7]*7 + 5;
%t A035655 Table[Count[IntegerPartitions[n, All, s1~Join~s2],
%t A035655 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 12 2020 *)
%t A035655 nmax = 80; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 5)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* _Robert Price_, Aug 12 2020 *)
%Y A035655 Cf. A035441-A035468, A035618-A035654, A035656-A035699.
%K A035655 nonn
%O A035655 1,19
%A A035655 _Olivier Gérard_