This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035656 #14 Aug 16 2020 20:27:47 %S A035656 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,3,0,0,0,0,1,3,6,0,0,0,1,3,7,11, %T A035656 0,0,1,3,7,14,18,0,1,3,7,15,25,29,1,3,7,15,28,43,45,3,7,15,29,50,70, %U A035656 69,7,15,29,53,85,112,103,15,29,54,92,140,172,153,29,54,95,155,222 %N A035656 Number of partitions of n into parts 7k and 7k+6 with at least one part of each type. %H A035656 Robert Price, <a href="/A035656/b035656.txt">Table of n, a(n) for n = 1..1000</a> %F A035656 G.f. : (-1 + 1/Product_ {k >= 0} (1 - x^(7 k + 6)))*(-1 + 1/Product_ {k >= 1} (1 - x^(7 k))). - _Robert Price_, Aug 12 2020 %t A035656 nmax = 81; s1 = Range[1, nmax/7]*7; s2 = Range[0, nmax/7]*7 + 6; %t A035656 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035656 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 12 2020 *) %t A035656 nmax = 81; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 12 2020 *) %Y A035656 Cf. A035441-A035468, A035618-A035655, A035657-A035699. %K A035656 nonn %O A035656 1,20 %A A035656 _Olivier Gérard_