A035661 Number of partitions of n into parts 7k+1 and 7k+6 with at least one part of each type.
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 5, 7, 10, 11, 11, 11, 12, 14, 18, 23, 25, 26, 27, 29, 33, 40, 47, 52, 55, 58, 62, 70, 81, 93, 102, 109, 115, 124, 137, 155, 173, 190, 203, 216, 232, 255, 283, 313, 340, 365, 388, 417, 454, 499, 544, 590, 631, 674
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nmax = 66; s1 = Range[0, nmax/7]*7 + 1; s2 = Range[0, nmax/7]*7 + 6; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 14 2020 *) nmax = 66; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 14 2020 *)
Formula
G.f. : (-1 + 1/Product_{k>=0} (1 - x^(7 k + 6)))*(-1 + 1/Product_{k>=0} (1 - x^(7 k + 1))). - Robert Price, Aug 14 2020