cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035662 Number of partitions of n into parts 7k+2 and 7k+3 with at least one part of each type.

This page as a plain text file.
%I A035662 #15 Aug 16 2020 21:18:35
%S A035662 0,0,0,0,1,0,1,1,1,1,2,3,2,4,4,4,5,6,8,7,11,11,12,14,16,19,19,25,26,
%T A035662 29,32,37,41,43,53,56,61,69,77,83,90,106,110,123,135,149,160,176,197,
%U A035662 210,231,253,276,297,323,359,381,418,453,494,526,576,627,669,728,790
%N A035662 Number of partitions of n into parts 7k+2 and 7k+3 with at least one part of each type.
%H A035662 Alois P. Heinz, <a href="/A035662/b035662.txt">Table of n, a(n) for n = 1..1000</a> (first 125 terms from Robert Price)
%F A035662 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(7 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(7 k + 3))). - _Robert Price_, Aug 16 2020
%t A035662 nmax = 66; s1 = Range[0, nmax/7]*7 + 2; s2 = Range[0, nmax/7]*7 + 3;
%t A035662 Table[Count[IntegerPartitions[n, All, s1~Join~s2],
%t A035662 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 14 2020 *)
%t A035662 nmax = 66; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 3)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* _Robert Price_, Aug 16 2020 *)
%Y A035662 Cf. A035441-A035468, A035618-A035661, A035663-A035699.
%K A035662 nonn
%O A035662 1,11
%A A035662 _Olivier Gérard_